GENERALIZATION OF THE EXPANSION METHOD ON 2 VARIABLES

被引:0
作者
PESHATOV, GD
机构
来源
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA | 1981年 / 07期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:85 / 88
页数:4
相关论文
共 50 条
[21]   Soft variables as a generalization of uncertain, random and fuzzy variables [J].
Bubnicki, Z .
NEURAL NETWORKS AND SOFT COMPUTING, 2003, :4-17
[22]   FROM SHEAVES ON P2 TO A GENERALIZATION OF THE RADEMACHER EXPANSION [J].
Bringmann, Kathrin ;
Manschot, Jan .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (04) :1039-1065
[23]   Foundation and generalization of the expansion by regions [J].
Bernd Jantzen .
Journal of High Energy Physics, 2011
[24]   On A Generalization Of The Laurent Expansion Theorem [J].
Saric, Branko .
APPLIED MATHEMATICS E-NOTES, 2013, 13 :36-50
[25]   Foundation and generalization of the expansion by regions [J].
Jantzen, Bernd .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12)
[26]   A NEW EXPANSION FORMULA FOR HYPERGEOMETRIC FUNCTIONS OF 2 VARIABLES [J].
SHARMA, BL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 :413-&
[27]   A GENERALIZATION IN SEVERAL-VARIABLES OF A TRANSCENDENCE CRITERION OF GELFOND .2. [J].
ZHU, YC .
SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1988, 31 (08) :897-907
[28]   A generalization of Gottlieb polynomials in several variables [J].
Choi, Junesang .
APPLIED MATHEMATICS LETTERS, 2012, 25 (01) :43-46
[29]   TOWARDS A GENERALIZATION OF THE SEPARATION OF VARIABLES TECHNIQUE [J].
Doschoris, Michael .
METHODS AND APPLICATIONS OF ANALYSIS, 2012, 19 (04) :381-402
[30]   Expanded (G/G2) Expansion Method to Solve Separated Variables for the 2+1-Dimensional NNV Equation [J].
Meng, Yong .
ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018