INVARIANTS OF GENERALIZED LIE-ALGEBRAS

被引:0
作者
AGRAWALA, VK
机构
来源
HADRONIC JOURNAL | 1981年 / 4卷 / 02期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:444 / 496
页数:53
相关论文
共 39 条
[1]  
Agrawala V. K., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P1, DOI 10.1007/BF01935323
[2]  
AGRAWALA VK, 1979, HADRONIC J, V2, P830
[3]   KILLING FORM FOR GRADED LIE-ALGEBRAS [J].
BACKHOUSE, NB .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (02) :239-244
[4]   4TH DEGREE CASIMIR OPERATOR OF SEMISIMPLE GRADED LIE-ALGEBRA (SP(2N) - 2N) [J].
BEDNAR, M ;
SACHL, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (07) :1487-1492
[6]  
BOURBAKI N, 1974, ELEMENTS MATH ALGE 1
[7]   Algebraic proof of the complete reducibility of representations of Semisimple Lie Groups. [J].
Casimir, H ;
van der Waerden, BL .
MATHEMATISCHE ANNALEN, 1935, 111 :1-12
[8]  
Casimir H, 1931, P K AKAD WET-AMSTERD, V34, P844
[9]   A MODEL OF BARYON STATES [J].
CUTKOSKY, RE .
ANNALS OF PHYSICS, 1963, 23 (03) :415-438
[10]  
Freudenthal H., 1956, INDAG MATH, V18, P511, DOI DOI 10.1016/S1385-7258(56)50068-6