INVARIANTS OF STATIONARY AF-ALGEBRAS AND TORSION SUBGROUPS OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

被引:0
作者
Nikolaev, Igor
机构
[1] 1505-657 Worcester St, Southbridge, 01550, MA
基金
加拿大自然科学与工程研究理事会;
关键词
AF-algebras; elliptic curves;
D O I
10.35834/mjms/1404997106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(A) be an AF-algebra given by a periodic Bratteli diagram with the incidence matrix A is an element of GL(n,Z). For a given polynomial p(x) is an element of Z[x] we assign to G(A) a finite abelian group Ab(p(x))(G(A)) = Z(n)/p(A)Z(n). It is shown that if p(0) = 1 and Z[x]/< p(x) is a principal ideal domain, then Ab(p(x))(G(A)) is an invariant of the strong stable isomorphism class of G(A). For n = 2 and p(x) = x - 1 we conjecture a formula linking values of the invariant and torsion subgroup of elliptic curves with complex multiplication.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 14 条
[1]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195
[2]  
Bratteli O., 2004, MEMOIRS AM MATH SOC, V168
[3]  
EFFROS EG, 1981, C BOARD MATH SCI REG, V46
[4]  
Hartshorne R., 1977, GTM
[5]  
Manin YI, 2004, LEGACY OF NIELS HENRIK ABEL, P685
[6]  
Morandi P. J., 2005, SMITH NORMAL FORM MA
[7]  
Nikolaev I, 2009, OSAKA J MATH, V46, P515
[8]   POINTS OF FINITE ORDER ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION [J].
OLSON, LD .
MANUSCRIPTA MATHEMATICA, 1974, 14 (02) :195-205
[9]  
Rieffel M.A., 1988, CONT MATH, V105, P191
[10]  
Rordam M., 2000, LONDON MATH SOC STUD, V49