Classification of Texture Images Based on the Histogram of Oriented Gradients Using Support Vector Machines

被引:9
作者
Demir, Hasan [1 ]
机构
[1] Namik Kemal Univ, Corlu Sch Engn, Dept Elect & Commun Engn, Tekirdag, Turkey
来源
ELECTRICA | 2018年 / 18卷 / 01期
关键词
Texture classification; Support vector machines; Histogram of oriented gradients;
D O I
10.5152/iujeee.2018.1814
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Herein, using support vector machines, texture images were classified based on the histogram of oriented gradients, from which feature vectors were obtained. In addition, the success rate was examined for the feature vectors with different dimensions and the minimum length of a feature vector for performing classification was determined to be 288 elements.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 18 条
[1]  
AHUJA N, 1983, PATTERN MODELS
[2]  
Barla A., IM PROC 2003 ICIP 20, V3
[3]  
Bhole C, 2011, LECT NOTES COMPUT SC, V7009, P326, DOI 10.1007/978-3-642-24319-6_40
[4]   TEXTURE SEGMENTATION USING GABOR MODULATION DEMODULATION [J].
CLARK, M ;
BOVIK, AC ;
GEISLER, WS .
PATTERN RECOGNITION LETTERS, 1987, 6 (04) :261-267
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[7]  
DAVIS LS, 1979, IEEE T PATTERN ANAL, V1
[8]  
Fu H., 2014, P ACM INT C MULT NOV
[9]  
Jangyodsuk P., 2014, P 7 INT C PERV TECHN
[10]  
Kwitt R., SALZBURG TEXTURE IMA