A FUNCTION IN THE DIRICHLET SPACE SUCH THAT ITS FOURIER-SERIES DIVERGES ALMOST EVERYWHERE

被引:0
作者
DESOUZA, GS
SAMPSON, G
机构
关键词
FOURIER SERIES; CONVERGENCE OF FOURIER SERIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An analytic function F on the disc belongs to B if \\F\\B = integral-1/0 integral-2pi/0 \F'(re(itheta)\dthetadr < infinity. Notice that B subset-of/not-equal H-1 subset-of/not-equal, where H-1 is the Hardy space of all analytic functions F so that \\F\\H-1 = sup 0<r<1 integral-2pi/0 \F(re(itheta))\dtheta < infinity, L1 is the Lebesgue space of integrable functions on [theta, 2pi], and the inclusion H-1 subset-of/not-equal L1 is taken in the sense of boundary values, that is, F is-an-element-of H-1 double-line arrow pointing right lim(r-->1-) RF(re(itheta) is-an-element-of L1. Kolmogorov in 1923 showed that there exists an f in L1 so that its Fourier series diverges almost everywhere. In 1953 Sunouchi showed that there exists an f in H-1 with an almost everywhere divergent Fourier series. The purpose of this note is to announce.
引用
收藏
页码:723 / 726
页数:4
相关论文
共 8 条
[1]  
Bari N. K., 1964, TREATISE TRIGONOMETR, V1
[2]  
DESOUZA GS, 1983, J LOND MATH SOC, V27, P267
[3]  
HARDY GH, 1949, CAMBRIDGE TRACTS MAT, V38
[4]  
Kolmogorov A. N., 1923, FUND MATH, V4, P324
[5]  
MEYER Y, MONOGRAF I MAT, V4
[6]  
SUNOUCHI GI, 1953, KODAI MATH SEM REP, V1, P27
[7]   APPROXIMATE IDENTITIES AND H1(R) [J].
UCHIYAMA, A ;
WILSON, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (01) :53-58
[8]  
Zygmund A, 1959, TRIGONOMETRIC SERIES, VI