MAXIMAL INEQUALITIES AND LAW OF ITERATED LOGARITHM

被引:17
作者
STOUT, WF [1 ]
机构
[1] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
关键词
D O I
10.1214/aop/1176996985
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:322 / 328
页数:7
相关论文
共 9 条
[1]  
Azuma K., 1967, TOHOKU MATH J, V19, P357, DOI DOI 10.2748/TMJ/1178243286
[2]   SOME CONVERGENCE THEOREMS FOR INDEPENCENT RANDOM VARIABLES [J].
CHOW, YS .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1482-&
[3]  
CSAKI E, 1968, STUD SCI MATH HUNG, V3, P287
[4]   The general form of the so-called law of the iterated logarithm [J].
Feller, W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :373-402
[5]  
Meyer P.A., 1972, MARTINGALES STOCHAST
[6]   MOMENT INEQUALITIES FOR MAXIMUM CUMULATIVE SUM [J].
SERFLING, RJ .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (04) :1227-&
[7]   CONVERGENCE PROPERTIES OF SN UNDER MOMENT RESTRICTIONS [J].
SERFLING, RJ .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (04) :1235-&
[8]  
SERFLING RJ, UNPUBLISHED
[9]  
TAKAHASHI S, 1972, ACTA MATH ACAD SCI H