WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS

被引:0
|
作者
Iqbal, Sajid [1 ]
Pecaric, Josip [2 ]
Samraiz, Muhammad [3 ]
Tomovski, Zivorad [4 ]
机构
[1] Univ Sargodha, Dept Math, Subcampus Mianwali, Mianwali, Pakistan
[2] Univ Zagreb, Fac Text Technol, Zagreb, Croatia
[3] Univ Sargodha, Dept Math, Sargodha, Pakistan
[4] Fac Math & Nat Sci, Gazi Baba Bb, Skopje 1000, Macedonia
来源
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI | 2018年 / 22卷 / 534期
关键词
Inequalities; convex function; fractional derivatives; generalized fractional integral operator;
D O I
10.21857/ydkx2cr509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to give a new class of general weighted Hardy-type inequalities involving an arbitrary convex function with some applications of generalized fractional calculus convolutive operators which contain Gauss-hypergeometric function, generalized Mittag-Leffler function and Hilfer fractional derivative operator, in the kernel.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 50 条
  • [31] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Erhan Set
    Muhammed Aslam Noor
    Muhammed Uzair Awan
    Abdurrahman Gözpinar
    Journal of Inequalities and Applications, 2017
  • [32] A note on coupled elliptic systems involving different Hardy-type terms
    Kang, Dongsheng
    Liu, Xiaonan
    APPLIED MATHEMATICS LETTERS, 2019, 89 : 35 - 40
  • [33] Some New Generalized Inequalities of Hardy Type Involving Several Functions on Time Scale Nabla Calculus
    Saied, A. I.
    AlNemer, Ghada
    Zakarya, Mohammed
    Cesarano, Clemente
    Rezk, Haytham M.
    AXIOMS, 2022, 11 (12)
  • [34] Elliptic systems involving critical nonlinearities and different Hardy-type terms
    Kang, Dongsheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 930 - 941
  • [35] Singularities of solutions to elliptic systems involving different Hardy-type terms
    Kang, Dongsheng
    Liu, Xiaonan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 757 - 765
  • [36] Hermite–Hadamard–Fejér type inequalities involving generalized fractional integral operators
    Erhan Set
    Junesang Choi
    E. Aykan Alan
    The Journal of Analysis, 2019, 27 : 1007 - 1027
  • [37] Hermite-Hadamard-Fejer type inequalities involving generalized fractional integral operators
    Set, Erhan
    Choi, Junesang
    Alan, E. Aykan
    JOURNAL OF ANALYSIS, 2019, 27 (04) : 1007 - 1027
  • [38] On weighted Hardy and Poincare-type inequalities for differences
    Burenkov, VI
    Evans, WD
    Goldman, ML
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 1997, 1 (01) : 1 - 10
  • [39] THREE-PARAMETER WEIGHTED HARDY TYPE INEQUALITIES
    Oinarov, R.
    Kalybay, A.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 85 - 93
  • [40] SOLUTIONS TO ELLIPTIC SYSTEMS INVOLVING DOUBLY CRITICAL NONLINEARITIES AND HARDY-TYPE POTENTIALS
    Kang, Dongsheng
    Luo, Jing
    Shi, Xiaolin
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (02) : 423 - 438