O(N) Nested Skeletonization Scheme for the Analysis of Multiscale Structures Using the Method of Moments

被引:20
作者
Bautista, Mario Alberto Echeverri [1 ]
Francavilla, Matteo Alessandro [2 ]
Martinsson, Per-Gunnar [3 ]
Vipiana, Francesca [4 ]
机构
[1] Ist Super Mario Boella, Dept Elect & Telecommun, I-10138 Turin, Italy
[2] Ist Super Mario Boella, I-10138 Turin, Italy
[3] Univ Colorado, Appl Math, Boulder, CO 80309 USA
[4] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
关键词
Fast solvers; integral equations (IEs); method of moments (MoM);
D O I
10.1109/JMMCT.2016.2645838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a scheme to compress the method of moments (MoM) matrix, which is linear in complexity for low to intermediate frequency problems in electromagnetics. The method is fully kernel independent and easy to implement using existing codes. The O(N) complexity for both memory and time (setup and matrix-vector product) is achieved thanks to the application of a recursive skeletonization to the H-2 matrix structure of the MoM matrix that uses the nested nature of the far interactions. The interpolative decomposition is applied in a novel manner in order to compress the "far-field signature" of the groups of basis functions. Moreover the scheme is fully characterized and it proves itself well suited for the analysis of multiscale structures.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 35 条
[11]  
Greengard L, 2009, ACTA NUMER, V18, P243, DOI 10.1017/S0962492906410011
[12]  
Hackbusch W, 1999, COMPUTING, V62, P89, DOI 10.1007/s006070050015
[13]  
HACKBUSCH W., 2000, LECT APPL MATH, P9, DOI DOI 10.1007/978-3-642-59709-1_2
[14]   A FAST DIRECT SOLVER FOR STRUCTURED LINEAR SYSTEMS BY RECURSIVE SKELETONIZATION [J].
Ho, Kenneth L. ;
Greengard, Leslie .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) :A2507-A2532
[15]   An Improved Transformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials [J].
Khayat, Michael A. ;
Wilton, Donald R. ;
Fink, Patrick W. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2008, 7 :377-380
[16]   Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation [J].
Li, Mengmeng ;
Francavilla, Matteo Alessandro ;
Chen, Rushan ;
Vecchi, Giuseppe .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (05) :2122-2134
[17]   Nested Equivalent Source Approximation for the Modeling of Multiscale Structures [J].
Li, Mengmeng ;
Francavilla, Matteo Alessandro ;
Vipiana, Francesca ;
Vecchi, Giuseppe ;
Chen, Rushan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (07) :3664-3678
[18]   An accelerated kernel-independent fast multipole method in one dimension [J].
Martinsson, P. G. ;
Rokhlin, V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03) :1160-1178
[19]   A fast direct solver for boundary integral equations in two dimensions [J].
Martinsson, PG ;
Rokhlin, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (01) :1-23
[20]   A multilevel matrix decomposition algorithm for analyzing scattering from large structures [J].
Michielssen, E ;
Boag, A .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (08) :1086-1093