O(N) Nested Skeletonization Scheme for the Analysis of Multiscale Structures Using the Method of Moments

被引:20
作者
Bautista, Mario Alberto Echeverri [1 ]
Francavilla, Matteo Alessandro [2 ]
Martinsson, Per-Gunnar [3 ]
Vipiana, Francesca [4 ]
机构
[1] Ist Super Mario Boella, Dept Elect & Telecommun, I-10138 Turin, Italy
[2] Ist Super Mario Boella, I-10138 Turin, Italy
[3] Univ Colorado, Appl Math, Boulder, CO 80309 USA
[4] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
关键词
Fast solvers; integral equations (IEs); method of moments (MoM);
D O I
10.1109/JMMCT.2016.2645838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a scheme to compress the method of moments (MoM) matrix, which is linear in complexity for low to intermediate frequency problems in electromagnetics. The method is fully kernel independent and easy to implement using existing codes. The O(N) complexity for both memory and time (setup and matrix-vector product) is achieved thanks to the application of a recursive skeletonization to the H-2 matrix structure of the MoM matrix that uses the nested nature of the far interactions. The interpolative decomposition is applied in a novel manner in order to compress the "far-field signature" of the groups of basis functions. Moreover the scheme is fully characterized and it proves itself well suited for the analysis of multiscale structures.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 35 条
[1]   A Hierarchical Fast Solver for EFIE-MoM Analysis of Multiscale Structures at Very Low Frequencies [J].
Bautista, M. A. Echeverri ;
Francavilla, M. A. ;
Vipiana, F. ;
Vecchi, G. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (03) :1523-1528
[2]  
Bebendorf M, 2000, NUMER MATH, V86, P565, DOI 10.1007/s002110000192
[3]   Linear-Complexity Direct and Iterative Integral Equation Solvers Accelerated by a New Rank-Minimized H2-Representation for Large-Scale 3-D Interconnect Extraction [J].
Chai, Wenwen ;
Jiao, Dan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (08) :2792-2805
[4]   An H2-Matrix-Based Integral-Equation Solver of Reduced Complexity and Controlled Accuracy for Solving Electrodynamic Problems [J].
Chai, Wenwen ;
Jiao, Dan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (10) :3147-3159
[5]   On the compression of low rank matrices [J].
Cheng, H ;
Gimbutas, Z ;
Martinsson, PG ;
Rokhlin, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1389-1404
[6]  
Chew W. C., 2001, FAST EFFICIENT ALGOR
[7]   Fast directional multilevel algorithms for oscillatory kernels [J].
Engquist, Bjoern ;
Ying, Lexing .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (04) :1710-1737
[8]   A direct solver with O(N) complexity for integral equations on one-dimensional domains [J].
Gillman, Adrianna ;
Young, Patrick M. ;
Martinsson, Per-Gunnar .
FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (02) :217-247
[9]   Construction and arithmetics of H-matrices [J].
Grasedyck, L ;
Hackbusch, W .
COMPUTING, 2003, 70 (04) :295-334
[10]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348