Application of Adomian decomposition method to solve hybrid fuzzy differential equations

被引:18
作者
Paripour, Mahmoud [1 ]
Hajilou, Elahe [2 ]
Hajilou, Afshin [2 ]
Heidari, Homa [2 ]
机构
[1] Hamedan Univ Technol, Dept Math, Hamadan 65155579, Iran
[2] Islamic Azad Univ, Hamedan Branch, Dept Math, Hamadan, Iran
关键词
Hybrid systems; Fuzzy differential equations; Adomian decomposition method; Predictor corrector method; Approximate solution;
D O I
10.1016/j.jtusci.2014.06.002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study the numerical solution of hybrid fuzzy differential equations by using Adomian decomposition method (ADM). This is powerful method which consider the approximate solution of a nonlinear equation as an infinite series usually converging to the accurate solution. Several numerical examples are given and by comparing the numerical results obtained from ADM and predictor corrector method (PCM), we have studied their accuracy. (C) 2014 Taibah University. Production and hosting by Elsevier B.V.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 24 条
[1]   CONVERGENCE OF ADOMIAN METHOD APPLIED TO NONLINEAR EQUATIONS [J].
ABBAOUI, K ;
CHERRUAULT, Y .
MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (09) :69-73
[2]  
Abbasbandy S, 2004, NONLINEAR STUD, V11, P117
[4]  
Adomian G., 1994, SOLVING FRONTIER PRO, DOI DOI 10.1007/978-94-015-8289-6
[5]   Toward the existence and uniqueness of solutions of second-order fuzzy differential equations [J].
Allahviranloo, T. ;
Kiani, N. A. ;
Barkhordari, M. .
INFORMATION SCIENCES, 2009, 179 (08) :1207-1215
[6]   Solving fuzzy differential equations by differential transformation method [J].
Allahviranloo, T. ;
Kiani, N. A. ;
Motamedi, N. .
INFORMATION SCIENCES, 2009, 179 (07) :956-966
[7]   Numerically solution of fuzzy differential equations by Adomian method [J].
Babolian, E ;
Sadeghi, H ;
Javadi, S .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (02) :547-557
[8]   First order linear fuzzy differential equations under generalized differentiability [J].
Bede, Barnabas ;
Rudas, Imre J. ;
Bencsik, Attila L. .
INFORMATION SCIENCES, 2007, 177 (07) :1648-1662
[9]   CONVERGENCE OF ADOMIAN METHOD [J].
CHERRUAULT, Y .
KYBERNETES, 1989, 18 (02) :31-38
[10]   Existence of the solutions of fuzzy differential equations with parameters [J].
Ding, ZH ;
Ma, M ;
Kandel, A .
INFORMATION SCIENCES, 1997, 99 (3-4) :205-217