A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity

被引:1
|
作者
Sohn, H. G. [1 ]
Kim, S. [1 ]
机构
[1] Chung Ang Univ, Dept Appl Stat, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Fractional ARIMA; Fractional ARIMA-GARCH; internet traffic; forecasting; Bps;
D O I
10.5351/KJAS.2013.26.6.1053
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.
引用
收藏
页码:1053 / 1061
页数:9
相关论文
共 50 条
  • [21] Long-memory dynamic Tobit models
    Brockwell, A. E.
    Chan, N. H.
    JOURNAL OF FORECASTING, 2006, 25 (05) : 351 - 367
  • [22] Hybrid convolutional long short-term memory models for sales forecasting in retail
    Moraes, Thais de Castro
    Yuan, Xue-Ming
    Chew, Ek Peng
    JOURNAL OF FORECASTING, 2024, 43 (05) : 1278 - 1293
  • [23] Periodic Long-Memory GARCH Models
    Bordignon, Silvano
    Caporin, Massimiliano
    Lisi, Francesco
    ECONOMETRIC REVIEWS, 2009, 28 (1-3) : 60 - 82
  • [24] Hybrid convolutional long short-term memory models for sales forecasting in retail
    de Castro Moraes, Thais
    Yuan, Xue-Ming
    Chew, Ek Peng
    Journal of Forecasting, 43 (05): : 1278 - 1293
  • [25] A Long Short Term Memory Implemented for Rainfall Forecasting
    Pranolo, Andri
    Mao, Yingchi
    Tang, Yan
    Haviluddin
    Wibawa, Aji Prasetya
    2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT, 2020, : 194 - 197
  • [26] Multi-step forecasting for long-memory processes
    Brodsky, J
    Hurvich, CM
    JOURNAL OF FORECASTING, 1999, 18 (01) : 59 - 75
  • [27] Hybrid Long Short-Term Memory Wavelet Transform Models for Short-Term Electricity Load Forecasting
    Guenoukpati, Agbassou
    Agbessi, Akuete Pierre
    Salami, Adekunle Akim
    Bakpo, Yawo Amen
    ENERGIES, 2024, 17 (19)
  • [28] Comparing the performances of symmetric and asymmetric generalized autoregressive conditionally heteroscedasticity models based on long-memory models under different distributions
    Al-Gounmeein, Remal Shaher
    Ismail, Mohd Tahir
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (05) : 1878 - 1908
  • [29] Estimation and forecasting of long-memory processes with missing values
    Palma, W
    Chan, NH
    JOURNAL OF FORECASTING, 1997, 16 (06) : 395 - 410
  • [30] Estimating and forecasting the long-memory parameter in the presence of periodicity
    Bisognin, C.
    Lopes, S. R. C.
    JOURNAL OF FORECASTING, 2007, 26 (06) : 405 - 427