Cost-Sensitive Clustering for Uncertain Data Based on Genetic Algorithm

被引:0
作者
Liu, C. Y. [1 ]
机构
[1] Heze Univ, Dept Comp & Informat Engn, Heze, Shandong, Peoples R China
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2013年 / 40卷 / 10期
关键词
Uncertain data; cost-sensitive clustering; genetic algorithm; probabilistic cardinality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existing clustering methods for uncertain data don't consider the cost factor, so proposes a method on cost-sensitive clustering for uncertain data based on genetic algorithm (CSUDC). First, give the cost-sensitive learning for uncertain data. Use the interval to dispose continuous and discrete attribute of uncertain data, so the traditional clustering method can cope with uncertain data. Second, a cost-sensitive clustering method for uncertain data is presented. Adopt the real encoding for the clustering data in genetic algorithm. The optimal cluster centers are searched by the selection, the crossover and mutation. The experimental results show, compared to the rest of the several common clustering method for uncertain data, CSUDC has higher accuracy of classification, and takes the total low cost in the clustering process.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 14 条
  • [1] Analysis of hot mix asphalt compaction data by means of fuzzy clustering techniques
    Amadore, Antonio
    Bosurgi, Gaetano
    Pellegrino, Orazio
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 430 - 437
  • [2] Chau M, 2006, LECT NOTES ARTIF INT, V3918, P199
  • [3] A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems
    Cordon, Oscar
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (06) : 894 - 913
  • [4] Hamdan H, 2005, IEEE INT CONF FUZZY, P879
  • [5] Huajie Xu, 2008, 2008 International Conference on Computer Science and Software Engineering (CSSE 2008), P474, DOI 10.1109/CSSE.2008.968
  • [6] Kriegel H.P., 2005, P 11 ACM SIGKDD INT, V17, P672, DOI DOI 10.1145/1081870.1081955
  • [7] Lee S. D., 2007, P 7 IEEE INT C DAT M, P483, DOI DOI 10.1109/ICDMW.2007.81
  • [8] Ling C. X., P 21 INT C MACH LEAR, P68
  • [9] Qin B, 2009, LECT NOTES ARTIF INT, V5476, P4, DOI 10.1007/978-3-642-01307-2_4
  • [10] NOCEA: A rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases
    Sarafis, Ioannis A.
    Trinder, Phil W.
    Zalzala, Ali M. S.
    [J]. APPLIED SOFT COMPUTING, 2007, 7 (03) : 668 - 710