NEUCOMP - A NEURAL-NETWORK COMPILER

被引:1
|
作者
EVANS, DJ
SULAIMAN, MN
机构
[1] Parallel Agorithms Research Centre, Loughborough University of Technology, Leicestershire
关键词
NNSIM; OBJECT-ORIENTED NEURAL NETWORK LANGUAGE; DESIRE NEUNET; NEUCOMP; MULTILAYERED PERCEPTRON; KOHONEN NETWORK; ART NETWORK;
D O I
10.1080/00207169408804312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
NEUCOMP is a Neural Network compiler that compiles the program of a particular NN model written as a list of mathematical specifications (known as NEUCOMP language) and translates it into a chosen target program. The mathematical specifications used are represented by scalar, vector and matrix assignments. The NEUCOMP language is a procedual language for general purpose NN models. It combines with an existing graphical package which can portray the NN architecture and display a graph of the results. The NN models being considered so far are the Multi-layered Perceptron, Kohonen Self-Organizing Network and Adaptive Resonance Theory (ART). The Multi-layered networks use a supervised learning algorithm whilst the Kohonen and ART networks use unsupervised learning.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [1] Solving optimisation problems using NEUCOMP - A neural network compiler
    Evans, DJ
    Sulaiman, MN
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 62 (1-2) : 1 - 21
  • [2] CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network Inferencing
    Dathathri, Roshan
    Saarikivi, Olli
    Chen, Hao
    Laine, Kim
    Lauter, Kristin
    Maleki, Saeed
    Musuvathi, Madanlal
    Mytkowicz, Todd
    PROCEEDINGS OF THE 40TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '19), 2019, : 142 - 156
  • [3] USING A GENERAL-PURPOSE NEURAL-NETWORK SIMULATION TOOL-NEUCOMP-FOR CHARACTER-RECOGNITION PROBLEMS
    SULAIMAN, MN
    EVANS, DJ
    JOURNAL OF MICROCOMPUTER APPLICATIONS, 1995, 18 (01): : 65 - 81
  • [4] NEURAL-NETWORK
    UEMURA, K
    JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY-NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 1995, 42 (07): : 541 - 541
  • [5] Neural-network modeling
    Furrer, D
    Thaler, S
    ADVANCED MATERIALS & PROCESSES, 2005, 163 (11): : 42 - 46
  • [6] Neural-network superresolution
    Torrieri, D
    Bakhru, K
    MILCOM 97 PROCEEDINGS, VOLS 1-3, 1997, : 1594 - 1598
  • [7] Neural-network wavefunctions
    Kaitlin McCardle
    Nature Computational Science, 2022, 2 : 284 - 284
  • [8] NEURAL-NETWORK HEURISTICS
    JOSIN, G
    BYTE, 1987, 12 (11): : 183 - &
  • [10] Neural-network wavefunctions
    McCardle, Kaitlin
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (05): : 284 - 284