RUNGE-KUTTA PAIRS FOR PERIODIC INITIAL-VALUE PROBLEMS

被引:37
作者
PAPAGEORGIOU, G
TSITOURAS, C
PAPAKOSTAS, SN
机构
[1] Department of Mathematics, National Technical University of Athens, Athens, 15780, Zografou Campus
关键词
RUNGE-KUTTA; PERIODIC INITIAL VALUE PROBLEMS; ERROR ESTIMATION; HYPERBOLIC EQUATIONS; PHASE-LAG; DISPERSION ORDER;
D O I
10.1007/BF02243849
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the relative merits of the phase-lag property of Runge-Kutta pairs and we propose new explicit embedded pairs for the numerical solution of first order differential systems with periodical solution. We analyze two families of 5(4) pairs and one family of 6(5) pairs with respect to the attainable phase-lag order. From each family we choose a pair with the highest achievable phase-lag order, optimized with respect to a measure of the magnitude of its truncation error coefficients. The new 5(4) algebraic order pairs are of phase-lag order 8(4) and 8(6) and they are both non-dissipative, while the 6(5) pair is dissipative and of phase-lag order 10(6). The new pairs exhibit an improved performance, in comparison with other currently known general and special purpose methods, when they are applied to semidiscretized hyperbolic equations and problems describing free and weakly forced oscillations.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 15 条
[1]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[2]  
BUTCHER J. C., 1964, J AUSTR MATH SOC, V4, P179, DOI DOI 10.1017/S1446788700023387
[3]  
Butcher J. C., 1987, NUMERICAL ANAL ORDIN
[4]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[5]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[7]  
DOOREN JR, 1974, J COMPUT APPL MATH, V16, P186
[8]  
Dormand JR., 1980, J COMPUT APPL MATH, V6, P19, DOI [DOI 10.1016/0771-050X(80)90013-3, 10.1016/0771-050X(80)90013-3]
[9]  
FEHLBERG E, 1969, NASA TR R315
[10]   DAMPING AND PHASE-ANALYSIS FOR SOME METHODS FOR SOLVING 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GLADWELL, I ;
THOMAS, RM .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (04) :495-503