GEOMETRIC INEQUALITY WITH APPLICATIONS TO LINEAR-FORMS

被引:96
作者
VAALER, JD
机构
[1] The University Op Texas, Austin, TX
关键词
D O I
10.2140/pjm.1979.83.543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let CNbe a cube of volume one centered at the origin in RNand let Pkbe a K-dimensional subspace of ℛN. We prove that CN∩ Pkhas K-dimensionai volume greater than or equal to one. As an application of this inequality we obtain a precise version of Minkowski’s linear forms theorem. We also state a conjecture which would allow our method to be generalized. © 1979 by Pacific Journal of Mathematics.
引用
收藏
页码:543 / 553
页数:11
相关论文
共 10 条
[1]   ON RANDOM VARIABLES WITH COMPARABLE PEAKEDNESS [J].
BIRNBAUM, ZW .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (01) :76-81
[2]  
Borell C., 1975, PERIOD MATH HUNGAR, V6, P111
[3]  
Breiman L., 1968, PROBABILITY
[4]  
Cassels J. W. S., 1971, GRUNDL MATH WISS, V99
[5]  
HENSLEY D, UNPUBLISHED
[6]   UNIMODALITY AND DOMINANCE FOR SYMMETRIC RANDOM VECTORS [J].
KANTER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) :65-85
[7]  
Minkowski H., 1910, GEOMETRIE ZAHLEN
[8]  
Prekopa A., 1975, ACTA SCI MATH, V34, P335
[9]   A THEOREM ON CONVEX SETS WITH APPLICATIONS [J].
SHERMAN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04) :763-767
[10]  
van der Corput JG., 1936, ACTA ARITH, V2, P145, DOI 10.4064/aa-2-1-145-146