MECHANICAL-PROPERTIES OF NEURONAL GROWTH CONE MEMBRANES STUDIED BY TETHER FORMATION WITH LASER OPTICAL TWEEZERS

被引:313
作者
DAI, JW [1 ]
SHEETZ, MP [1 ]
机构
[1] DUKE UNIV, MED CTR, DEPT CELL BIOL, DURHAM, NC 27710 USA
关键词
D O I
10.1016/S0006-3495(95)80274-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Many cell phenomena involve major morphological changes, particularly in mitosis and the process of cell migration. For cells or neuronal growth cones to migrate, they must extend the leading edge of the plasma membrane as a lamellipodium or filopodium. During extension of filopodia, membrane must move across the surface creating shear and flow. Intracellular biochemical processes driving extension must work against the membrane mechanical properties, but the forces required to extend growth cones have not been measured. In this paper, laser optical tweezers and a nanometer-level analysis system were used to measure the neuronal growth cone membrane mechanical properties th rough the extension of fi loped ia-like tethers with IgG-coated beads. Although the probability of a bead attaching to the membrane was constant irrespective of treatment; the probability of forming a tether with a constant force increased dramatically with cytochalasin B or D and dimethylsulfoxide (DMSO). These are treatments that alter the organization of the actin cytoskeleton. The force required to hold a tether at zero velocity (F-0) was greater than forces generated by single molecular motors, kinesin and myosin; and F, decreased with cytochalasin B or D and DMSO in correlation with the changes in the probability of tether formation. The force of the tether on the bead increased linearly with the velocity of tether elongation. From the dependency of tether force on velocity of tether formation, we calculated a parameter related to membrane viscosity, which decreased with cytochalasin B or D, ATP depletion, nocodazole, and DMSO. These results indicate that the actin cytoskeleton affects the membrane mechanical properties, including the force required for membrane extension and the viscoelastic behavior.
引用
收藏
页码:988 / 996
页数:9
相关论文
共 57 条
[1]   FORCES OF A SINGLE-BEAM GRADIENT LASER TRAP ON A DIELECTRIC SPHERE IN THE RAY OPTICS REGIME [J].
ASHKIN, A .
BIOPHYSICAL JOURNAL, 1992, 61 (02) :569-582
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[4]   OPTICAL TRAPPING AND MANIPULATION OF SINGLE CELLS USING INFRARED-LASER BEAMS [J].
ASHKIN, A ;
DZIEDZIC, JM ;
YAMANE, T .
NATURE, 1987, 330 (6150) :769-771
[5]   INTERNAL CELL MANIPULATION USING INFRARED-LASER TRAPS [J].
ASHKIN, A ;
DZIEDZIC, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7914-7918
[6]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[7]   SPECTRIN-BASED MEMBRANE SKELETON - A MULTIPOTENTIAL ADAPTER BETWEEN PLASMA-MEMBRANE AND CYTOPLASM [J].
BENNETT, V .
PHYSIOLOGICAL REVIEWS, 1990, 70 (04) :1029-1065
[8]   LATERAL MOBILITY OF INTEGRAL PROTEINS IN RED-BLOOD-CELL TETHERS [J].
BERK, DA ;
HOCHMUTH, RM .
BIOPHYSICAL JOURNAL, 1992, 61 (01) :9-18
[9]   DETERMINATION OF BILAYER-MEMBRANE BENDING STIFFNESS BY TETHER FORMATION FROM GIANT, THIN-WALLED VESICLES [J].
BO, L ;
WAUGH, RE .
BIOPHYSICAL JOURNAL, 1989, 55 (03) :509-517
[10]  
BRAY D, 1985, J NEUROSCI, V5, P3204