ERMAKOV SYSTEMS, EXACT SOLUTION, AND GEOMETRICAL ANGLES AND PHASES

被引:72
作者
MAAMACHE, M
机构
[1] Institut de Physique, Université de Sétif
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 02期
关键词
D O I
10.1103/PhysRevA.52.936
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ermakov systems are pairs of coupled, time-dependent nonlinear dynamical equations possessing a joint constant of motion. We show how to derive the Ermakov system from nonharmonic oscillators. We present a detailed study of Ermakov systems from a classical and quantum point of view. Finally the nonadiabatic Hannay's angle and Berry's phase for the system are calculated along with its adiabatic limit.
引用
收藏
页码:936 / 940
页数:5
相关论文
共 34 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
AMES WF, 1978, NONLINEAR EQUATIONS
[3]   GEOMETRIC ANGLES IN QUANTUM AND CLASSICAL PHYSICS [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 129 (04) :201-207
[5]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[6]   CLASSICAL NON-ADIABATIC ANGLES [J].
BERRY, MV ;
HANNAY, JH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (06) :L325-L331
[7]   GEOMETRY OF QUANTUM EVOLUTION AND THE COHERENT STATE [J].
BOSE, SK ;
DUTTAROY, B .
PHYSICAL REVIEW A, 1991, 43 (07) :3217-3220
[8]   SO(2,1)-INVARIANT SYSTEMS AND THE BERRY PHASE [J].
CERVERO, JM ;
LEJARRETA, JD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14) :L663-L666
[9]   ANALYSIS OF BERRY PHASE BY THE EVOLUTION OPERATOR METHOD [J].
CHENG, CM ;
FUNG, PCW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17) :3493-3501
[10]   BERRY PHASE FOR ANHARMONIC-OSCILLATORS [J].
DATTA, N ;
GHOSH, G .
PHYSICAL REVIEW A, 1992, 46 (09) :5358-5362