SHARPER BOUNDS FOR CHEBYSHEV FUNCTIONS THETA(X) AND PSI(X)

被引:128
作者
ROSSER, JB
SCHOENFELD, L
机构
[1] UNIV WISCONSIN, MATH RES CTR, MADISON, WI 53706 USA
[2] SUNY, DEPT MATH, AMHERST, NY 14226 USA
关键词
D O I
10.2307/2005479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:243 / 269
页数:27
相关论文
共 21 条
[1]  
Edwards H.E., 1974, RIEMANNS ZETA FUNCTI
[2]   TRIGONOMETRIC POLYNOMIALS IN PRIME NUMBER THEORY [J].
FRENCH, SH .
ILLINOIS JOURNAL OF MATHEMATICS, 1966, 10 (02) :240-&
[3]  
INGHAM AE, 1932, DISTRIBUTION PRIME N
[4]  
Landau E, 1953, HDB LEHRE VERTEILUNG, V2
[5]  
Lehman R.S., 1966, ACTA ARITH, V11, P397
[6]  
LEHMAN RS, 1970, P LOND MATH SOC, V20, P303
[7]  
Lehmer D. H., 1956, MATHEMATIKA, V3, P102
[8]   ON THE ROOTS OF THE RIEMANN ZETA-FUNCTION [J].
LEHMER, DH .
ACTA MATHEMATICA, 1956, 95 (3-4) :291-297
[9]   Explicit bounds for some functions of prime numbers [J].
Rosser, B .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :211-232
[10]  
Rosser J. B., 1962, ILLINOIS J MATH, V6, P64