NEW RENORMALIZATION GROUP TRANSFORMATION FOR ISING SPIN SYSTEMS

被引:36
作者
BARBER, MN [1 ]
机构
[1] UNIV NEW S WALES, DEPT APPL MATH, KENSINGTON, NEW S WALES, AUSTRALIA
来源
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS | 1975年 / 8卷 / 10期
关键词
D O I
10.1088/0022-3719/8/10/020
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:L203 / L207
页数:5
相关论文
共 18 条
[1]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[2]   THEORY OF EQUILIBRIUM CRITICAL PHENOMENA [J].
FISHER, ME .
REPORTS ON PROGRESS IN PHYSICS, 1967, 30 :615-+
[3]   RENORMALIZATION GROUP IN THEORY OF CRITICAL BEHAVIOR [J].
FISHER, ME .
REVIEWS OF MODERN PHYSICS, 1974, 46 (04) :597-616
[4]   TRANSFORMATIONS OF ISING MODELS [J].
FISHER, ME .
PHYSICAL REVIEW, 1959, 113 (04) :969-981
[5]   NUMERICAL EVALUATIONS OF CRITICAL PROPERTIES OF TWO-DIMENSIONAL ISING-MODEL [J].
KADANOFF, LP ;
HOUGHTON, A .
PHYSICAL REVIEW B, 1975, 11 (01) :377-386
[6]   INTRODUCTION TO RENORMALIZATION GROUP [J].
MA, SK .
REVIEWS OF MODERN PHYSICS, 1973, 45 (04) :589-614
[7]   CRITICAL SURFACE FOR SQUARE ISING SPIN-LATTICE [J].
NAUENBER.M ;
NIENHUIS, B .
PHYSICAL REVIEW LETTERS, 1974, 33 (16) :944-946
[8]  
NELSON DR, 1973, 18 AIP C P MAGN MAGN, P888
[9]   WILSON THEORY FOR SPIN SYSTEMS ON A TRIANGULAR LATTICE [J].
NIEMEIJER, T ;
VANLEEUW.JM .
PHYSICAL REVIEW LETTERS, 1973, 31 (23) :1411-1414
[10]   WILSON THEORY FOR 2-DIMENSIONAL ISING SPIN SYSTEMS [J].
NIEMEYER, T ;
VANLEEUW.JM .
PHYSICA, 1974, 71 (01) :17-40