Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications

被引:335
作者
Li, Yunming [1 ,2 ]
Hu, Yong-Sheng [1 ,2 ]
Qi, Xingguo [1 ,2 ]
Rong, Xiaohui [1 ,2 ]
Li, Hong [1 ,2 ]
Huang, Xuejie [1 ,2 ]
Chen, Liquan [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Natl Lab Condensed Matter Phys,Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; Sodium-ion batteries; Anode; Anthracite; Coal; Pouch cells; High safety;
D O I
10.1016/j.ensm.2016.07.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy storage technologies are the core technology for smooth integration of renewable energy into the grid. Among which sodium-ion batteries show great promise due to the potential low cost originated from the abundant resources and wide distribution of sodium. However, the anode still remains great challenge for the commercialization of sodium-ion batteries. Here we report a pyrolyzed anthracite (PA) anode material with superior low cost and high safety through one simple carbonization process. The PA anode material shows promising sodium storage performance demonstrated by prototype pouch cells with a practical energy density of 100 Wh kg(-1), good rate and cycling performance. Furthermore, the high safety of pouch cells with PA anode was also proved by a series of safety experiments. These desirable properties of the PA anode can meet the requirements for practical applications and pave the way for the industrial production of low-cost and high-safety sodium-ion batteries for large-scale electrical energy storage. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 40 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[3]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[4]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[5]   First exploration of ultrafine Na7V3(P2O7)(4) as a high-potential cathode material for sodium-ion battery [J].
Deng, Chao ;
Zhang, Sen ;
Zhao, Baidan .
ENERGY STORAGE MATERIALS, 2016, 4 :71-78
[6]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[7]   Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries [J].
Jian, Zelang ;
Han, Wenze ;
Lu, Xia ;
Yang, Huaixin ;
Hu, Yong-Sheng ;
Zhou, Jing ;
Zhou, Zhibin ;
Li, Jianqi ;
Chen, Wen ;
Chen, Dongfeng ;
Chen, Liquan .
ADVANCED ENERGY MATERIALS, 2013, 3 (02) :156-160
[8]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721
[9]  
Li Y.M., 2011, ENERGY STORAGE MAT, V2, P139
[10]   Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries [J].
Li, Yunming ;
Hu, Yong-Sheng ;
Titirici, Maria-Magdalena ;
Chen, Liquan ;
Huang, Xuejie .
ADVANCED ENERGY MATERIALS, 2016, 6 (18)