Stochastic webs and continuum percolation in quasiperiodic media

被引:4
作者
Chernikov, A. A. [1 ]
Rogalsky, A. V. [2 ]
机构
[1] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
[2] Univ Maryland, EW Space Sci Ctr, College Pk, MD 20742 USA
关键词
D O I
10.1063/1.166055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report the results of an analytical and numerical study of the contour line and surface geometry in two models of continuum percolation with quasiperiodic properties. Both the fractal dimension of long isolines and the scaling coefficient nu are determined analytically for the two-dimensional percolation problem. The scaling characteristics of the isosurfaces of the three-dimensional potential function with an icosahedral symmetry are obtained using computer graphic representation.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 23 条
[1]   SERIES STUDY OF PERCOLATION MOMENTS IN GENERAL DIMENSION [J].
ADLER, J ;
MEIR, Y ;
AHARONY, A ;
HARRIS, AB .
PHYSICAL REVIEW B, 1990, 41 (13) :9183-9206
[2]   SHOULD ALL CRYSTALS BE BCC - LANDAU THEORY OF SOLIDIFICATION AND CRYSTAL NUCLEATION [J].
ALEXANDER, S ;
MCTAGUE, J .
PHYSICAL REVIEW LETTERS, 1978, 41 (10) :702-705
[4]  
Chernikov A. A., 1992, 93006 UMLPR
[5]   FRACTALS IN 2 DIMENSIONS AND CONFORMAL-INVARIANCE [J].
DUPLANTIER, B .
PHYSICA D, 1989, 38 (1-3) :71-87
[6]   SPREADING OF PERCOLATION IN 3 AND 4 DIMENSIONS [J].
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09) :1681-1689
[7]  
Hermann D. W., 1981, Z PHYS B, V44, P339
[8]   PERCOLATION, STATISTICAL TOPOGRAPHY, AND TRANSPORT IN RANDOM-MEDIA [J].
ISICHENKO, MB .
REVIEWS OF MODERN PHYSICS, 1992, 64 (04) :961-1043
[9]   SELF SIMILARITY AND CORRELATIONS IN PERCOLATION [J].
KAPITULNIK, A ;
AHARONY, A ;
DEUTSCHER, G ;
STAUFFER, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (08) :L269-L274
[10]  
KASTELEYN PW, 1969, J PHYS SOC JPN, VS 26, P11