ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM

被引:176
作者
HANSEN, P [1 ]
JAUMARD, B [1 ]
机构
[1] DEPT MATH APPL, GERAD & ECOLE POLYTECH, MONTREAL H3C 3A7, QUEBEC, CANADA
关键词
AMS Subject Classification: 90 Programming; 03; Logic; computation; heuristic; Satisfiability;
D O I
10.1007/BF02241270
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Old and new algorithms for the Maximum Satisfiability problem are studied. We first summarize the different heuristics previously proposed, i.e., the approximation algorithms of Johnson and of Lieberherr for the general Maximum Satisfiability problem, and the heuristics of Lieberherr and Specker, Poljak and Turzik for the Maximum 2-Satisfiability problem. We then consider two recent local search algorithmic schemes, the Simulated Annealing method of Kirkpatrick, Gelatt and Vecchi and the Steepest Ascent Mildest Descent method, and adapt them to the Maximum Satisfiability problem. The resulting algorithms, which avoid being blocked as soon as a local optimum has been found, are shown empirically to be more efficient than the heuristics previously proposed in the literature. © 1990 Springer-Verlag.
引用
收藏
页码:279 / 303
页数:25
相关论文
共 50 条
  • [1] Algorithms for four variants of the exact satisfiability problem
    Dahllöf, V
    Jonsson, P
    Beigel, R
    THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) : 373 - 394
  • [2] Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    Goemans, MX
    Williamson, DP
    JOURNAL OF THE ACM, 1995, 42 (06) : 1115 - 1145
  • [3] Quantum Algorithm for Maximum Satisfiability
    Alasow, Abdirahman
    Perkowski, Marek
    2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022), 2022, : 27 - 34
  • [4] The Satisfiability Problem for a Quantitative Fragment of PCTL
    Chodil, Miroslav
    Kucera, Antonin
    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2021, 2021, 12867 : 149 - 161
  • [5] The satisfiability problem for a quantitative fragment of PCTL
    Chodil, Miroslav
    Kucera, Antonin
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 139
  • [6] The local search approximation algorithms for maximum not-all-equal k-satisfiability problems
    Xian, Ai-Yong
    Zhu, Da-Ming
    Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (08): : 1561 - 1573
  • [7] Algorithms for testing satisfiability formulas
    Vlada, M
    ARTIFICIAL INTELLIGENCE REVIEW, 2001, 15 (03) : 153 - 163
  • [8] Algorithms for Testing Satisfiability Formulas
    Marin Vlada
    Artificial Intelligence Review, 2001, 15 : 153 - 163
  • [9] THE MINIMUM SATISFIABILITY PROBLEM
    KOHLI, R
    KRISHNAMURTI, R
    MIRCHANDANI, P
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) : 275 - 283
  • [10] Quantum Algorithm for Variant Maximum Satisfiability
    Alasow, Abdirahman
    Jin, Peter
    Perkowski, Marek
    ENTROPY, 2022, 24 (11)