Prediction of Mental Health Problems Among Children Using Machine Learning Techniques

被引:1
|
作者
Sumathi, M. R. [1 ]
Poorna, B. [2 ]
机构
[1] Bharathiar Univ, Dept Comp Sci, Coimbatore, Tamil Nadu, India
[2] SSS Jain Coll, Madras, Tamil Nadu, India
关键词
Mental Health Diagnosis; Machine Learning; Prediction; Feature Selection; Basic Mental Health Problems;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Early diagnosis of mental health problems helps the professionals to treat it at an earlier stage and improves the patients' quality of life. So, there is an urgent need to treat basic mental health problems that prevail among children which may lead to complicated problems, if not treated at an early stage. Machine learning Techniques are currently well suited for analyzing medical data and diagnosing the problem. This research has identified eight machine learning techniques and has compared their performances on different measures of accuracy in diagnosing five basic mental health problems. A data set consisting of sixty cases is collected for training and testing the performance of the techniques. Twenty-five attributes have been identified as important for diagnosing the problem from the documents. The attributes have been reduced by applying Feature Selection algorithms over the full attribute data set. The accuracy over the full attribute set and selected attribute set on various machine learning techniques have been compared. It is evident from the results that the three classifiers viz., Multilayer Perceptron, Multiclass Classifier and LAD Tree produced more accurate results and there is only a slight difference between their performances over full attribute set and selected attribute set.
引用
收藏
页码:552 / 557
页数:6
相关论文
共 50 条
  • [41] Heart Disease Prediction Using Machine Learning Techniques
    Sadar, Uzama
    Agarwal, Parul
    Parveen, Suraiya
    Jain, Sapna
    Obaid, Ahmed J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 551 - 560
  • [42] Heart Disease Prediction Using Machine Learning Techniques
    Guruprasad, Sunitha
    Mathias, Valesh Levin
    Dcunha, Winslet
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 762 - 766
  • [43] Prediction of Movies popularity Using Machine Learning Techniques
    Latif, Muhammad Hassan
    Afzal, Hammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (08): : 127 - 131
  • [44] Heart Disease Prediction Using Machine Learning Techniques
    Sipail, Herold Sylvestro
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    1ST NATIONAL BIOMEDICAL ENGINEERING CONFERENCE (NBEC 2021): ADVANCED TECHNOLOGY FOR MODERN HEALTHCARE, 2021, : 48 - 52
  • [45] Diabetes prediction model using machine learning techniques
    Sandip Kumar Singh Modak
    Vijay Kumar Jha
    Multimedia Tools and Applications, 2024, 83 : 38523 - 38549
  • [46] Churn Prediction of Employees Using Machine Learning Techniques
    Bandyopadhyay, Nilasha
    Jadhav, Anil
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2021, 15 (01): : 51 - 59
  • [47] Protein Disorder Prediction Using Machine Learning Techniques
    Balto, Badee
    Munshi, Amr
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (03): : 575 - 579
  • [48] Airfare Prices Prediction Using Machine Learning Techniques
    Tziridis, K.
    Kalampokas, Th.
    Papakostas, G. A.
    Diamantaras, K. I.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1036 - 1039
  • [49] Diabetes prediction model using machine learning techniques
    Modak, Sandip Kumar Singh
    Jha, Vijay Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38523 - 38549
  • [50] Chip Performance Prediction Using Machine Learning Techniques
    Su, Min-Yan
    Lin, Wei-Chen
    Kuo, Yen-Ting
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    Hsueh, Sung S-Y
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,