Prediction of Mental Health Problems Among Children Using Machine Learning Techniques

被引:1
|
作者
Sumathi, M. R. [1 ]
Poorna, B. [2 ]
机构
[1] Bharathiar Univ, Dept Comp Sci, Coimbatore, Tamil Nadu, India
[2] SSS Jain Coll, Madras, Tamil Nadu, India
关键词
Mental Health Diagnosis; Machine Learning; Prediction; Feature Selection; Basic Mental Health Problems;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Early diagnosis of mental health problems helps the professionals to treat it at an earlier stage and improves the patients' quality of life. So, there is an urgent need to treat basic mental health problems that prevail among children which may lead to complicated problems, if not treated at an early stage. Machine learning Techniques are currently well suited for analyzing medical data and diagnosing the problem. This research has identified eight machine learning techniques and has compared their performances on different measures of accuracy in diagnosing five basic mental health problems. A data set consisting of sixty cases is collected for training and testing the performance of the techniques. Twenty-five attributes have been identified as important for diagnosing the problem from the documents. The attributes have been reduced by applying Feature Selection algorithms over the full attribute data set. The accuracy over the full attribute set and selected attribute set on various machine learning techniques have been compared. It is evident from the results that the three classifiers viz., Multilayer Perceptron, Multiclass Classifier and LAD Tree produced more accurate results and there is only a slight difference between their performances over full attribute set and selected attribute set.
引用
收藏
页码:552 / 557
页数:6
相关论文
共 50 条
  • [21] Crop Yield Prediction Using Ensemble Machine Learning Techniques
    P. Kuppan
    V. Vishwa Priya
    SN Computer Science, 5 (8)
  • [22] Prediction of Instructor Performance using Machine and Deep Learning Techniques
    Abunasser, Basem S.
    AL-Hiealy, Mohammed Rasheed J.
    Barhoom, Alaa M.
    Almasri, Abdelbaset R.
    Abu-Naser, Samy S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 78 - 83
  • [23] Prediction of hypercholesterolemia using machine learning techniques
    Pooyan Moradifar
    Mohammad Meskarpour Amiri
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 255 - 265
  • [24] Prediction of hypercholesterolemia using machine learning techniques
    Moradifar, Pooyan
    Amiri, Mohammad Meskarpour
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (01) : 255 - 265
  • [25] Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques
    Saboor, Abdus
    Hussain, Arif
    Agbley, Bless Lord Y.
    ul Haq, Amin
    Li, Jian Ping
    Kumar, Rajesh
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02) : 1325 - 1344
  • [26] Prediction of Mental Health Problem Using Annual Student Health Survey: Machine Learning Approach
    Baba, Ayako
    Bunji, Kyosuke
    JMIR MENTAL HEALTH, 2023, 10
  • [27] Prediction of acute methanol poisoning prognosis using machine learning techniques
    Rahimi, Mitra
    Hosseini, Sayed Masoud
    Mohtarami, Seyed Ali
    Mostafazadeh, Babak
    Evini, Peyman Erfan Talab
    Fathy, Mobin
    Kazemi, Arya
    Khani, Sina
    Mortazavi, Seyed Mohammad
    Soheili, Amirali
    Vahabi, Seyed Mohammad
    Shadnia, Shahin
    TOXICOLOGY, 2024, 504
  • [28] Stacking Model for Heart Stroke Prediction using Machine Learning Techniques
    Mohapatra S.
    Mishra I.
    Mohanty S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [29] Prediction of Violence Against Adolescent Girls Using Machine Learning Techniques
    Mishra, Pooja Manghirmalani
    Kulkarni, Sushil
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2021), 2022, 417 : 186 - 194
  • [30] Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques
    Mohan, Senthilkumar
    Thirumalai, Chandrasegar
    Srivastava, Gautam
    IEEE ACCESS, 2019, 7 : 81542 - 81554