Solvability of p-Laplacian singular boundary value problems on time scales

被引:1
作者
Prasad, Kapula Rajendra [1 ]
Murali, Penugurthi [1 ]
机构
[1] Andhra Univ, Dept Appl Math, Visakhapatnam 530003, Andhra Pradesh, India
关键词
p-Laplacian; singular boundary value problem; time scale; positive solution; Leray-Schauder degree;
D O I
10.1515/apam-2012-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with establishing the existence of positive solutions of p-Laplacian singular boundary value problem on time scale (phi(p)(y(Delta)(t))(del) + q(t) f(t, y(t), y(Delta)(t)) = 0, t is an element of(0, 1)(T), y(0) = 0 = y(Delta)(1), where phi(p)(y) = vertical bar y vertical bar(p-2) y, p > 1 and f : [0, 1](T) x R-2 -> R is continuous and may be singular at y(Delta) = 0 but not at y = 0. We establish the existence of at least one positive solution for the p-Laplacian singular boundary value problem on time scales by using the Leray-Schauder degree theory.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 18 条