MICROCAUSALITY, KRAMERS THEOREM AND BOUND-STATE BETHE-SALPETER EQUATION

被引:2
|
作者
ALLCOCK, GR
LEIGH, WJ
机构
关键词
D O I
10.1016/0550-3213(70)90358-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
引用
收藏
页码:413 / &
相关论文
共 50 条
  • [21] Bound states from the spectral Bethe-Salpeter equation
    Eichmann, Gernot
    Gomez, Andres
    Horak, Jan
    Pawlowski, Jan M.
    Wessely, Jonas
    Wink, Nicolas
    PHYSICAL REVIEW D, 2024, 109 (09)
  • [22] APPROXIMATE SOLUTION OF BETHE-SALPETER EQUATION FOR BOUND STATES
    KAWAGUCHI, M
    NUOVO CIMENTO, 1964, 34 (03): : 791 - +
  • [23] Bethe-Salpeter equation for classical gravitational bound states
    Tim Adamo
    Riccardo Gonzo
    Journal of High Energy Physics, 2023
  • [24] Bethe-Salpeter equation for classical gravitational bound states
    Adamo, Tim
    Gonzo, Riccardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [25] Gluon bound state and asymptotic freedom derived from the Bethe-Salpeter equation
    Fukamachi, Hitoshi
    Kondo, Kei-Ichi
    Nishino, Shogo
    Shinohara, Toru
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (05):
  • [26] Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
    de Paula, W.
    Frederico, T.
    Salme, G.
    Viviani, M.
    TNPI2016 - XV CONFERENCE ON THEORETICAL NUCLEAR PHYSICS IN ITALY, 2018, 981
  • [27] Instantaneous Bethe-Salpeter equation:: Analytic approach for nonvanishing masses of the bound-state constituents -: art. no. 036007
    Lucha, W
    Maung, KM
    Schöberl, FF
    PHYSICAL REVIEW D, 2001, 64 (03):
  • [28] Schrodinger models for solutions of the Bethe-Salpeter equation in Minkowski space. II. Fermionic bound-state constituents
    Hall, Richard L.
    Lucha, Wolfgang
    PHYSICAL REVIEW D, 2014, 90 (06):
  • [29] Recent developments in bound-state calculations using the Dyson-Schwinger and Bethe-Salpeter equations
    Sanchis-Alepuz, Helios
    Williams, Richard
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 232 : 1 - 21
  • [30] SOLUTIONS OF A BETHE-SALPETER EQUATION
    CUTKOSKY, RE
    PHYSICAL REVIEW, 1954, 96 (04): : 1135 - 1141