A SHORTCUT TO ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS

被引:0
作者
DEHN, T [1 ]
机构
[1] UNIV KARLSRUHE, INST PRAKT MATH, D-76128 KARLSRUHE, GERMANY
关键词
ORTHOGONAL POLYNOMIALS; RECURRENCE RELATIONS; POINCARE THEOREM; RATIO ASYMPTOTICS; PADE APPROXIMANTS; CONVERGENCE ACCELERATION; DELTA-2-METHOD;
D O I
10.1016/0377-0427(94)90301-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the asymptotic behavior of the ratios q(n+1)(z)/q(n)(z) of polynomials orthonormal with respect to some positive measure mu. Let the recurrence coefficients alpha(n) and beta(n) converge to 0 and 1/2, respectively. Then, q(n+1)(z)/q(n)(z) --> PHI(z), for n --> infinity, locally uniformly for z is-an-element-of C\supp mu, where PHI maps C\[-1, 1] conformally onto the exterior of the unit disc (Nevai (1979)). We provide a new and direct proof for this. and some related results due to Nevai, and apply it to convergence acceleration of diagonal Pade approximants.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 24 条
[1]  
[Anonymous], ANN FAC SCI TOULOUSE
[2]  
BLUMENTHAL O, 1988, THESIS G AUGUST U GO
[3]  
BREZINSKI C, 1978, COLLECT LANG ALGORIT
[4]  
CHICHARA TS, 1978, INTRO ORTHOGONAL POL
[5]  
DEHN T, 1992, THESIS U KARLSRUHE
[6]  
Favard J, 1935, CR HEBD ACAD SCI, V200, P2052
[7]  
FREUD G, 1969, MATH REIHE, V33
[8]   On an enhancement of Stieltjes' moment problems [J].
Hamburger, H .
MATHEMATISCHE ANNALEN, 1920, 81 :235-319
[9]  
HAMBURGER H, 1921, MATH ANN, V82, P169
[10]  
HAMBURGER H, 1921, MATH ANN, V82, P121