The Korteweg-de Vries equation with a source given as a Fourier integral over eigenfunctions of the so-called generating operator is considered. It is shown that, depending on the choice of the basis of the eigenfunctions, we have the following three possibilities: (I) evolution equations for the scattering data are nonintegrable; (2) evolution equations for the scattering data are integrable but the solution of the Cauchy problem for the Korteweg-de Vries equation with a source at some t' > t(0) leaves the considered class of functions decreasing rapidly enough as x --> +/-infinity; (3) evolution equations for the scattering data are integrable and the solution of the Cauchy problem for the Korteweg-de Vries equation with a source exists at all t > t(0). All these possibilities are widespread and occur in other Lax equations with a source.
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
Sahadevan, R.
Nagavigneshwari, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
机构:
Dipartimento di Fisica, Università di Roma La Sapienza, Sezione di Roma, I-00185 RomaDipartimento di Fisica, Università di Roma La Sapienza, Sezione di Roma, I-00185 Roma
Degasperis A.
Manakov S.V.
论文数: 0引用数: 0
h-index: 0
机构:
Landau Institute for Theoretical Physics, Academy of Sciences, MoscowDipartimento di Fisica, Università di Roma La Sapienza, Sezione di Roma, I-00185 Roma
Manakov S.V.
Santini P.M.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Fisica, Università di Roma La Sapienza, Sezione di Roma, I-00185 RomaDipartimento di Fisica, Università di Roma La Sapienza, Sezione di Roma, I-00185 Roma