ROTATORS, PERIODICITY, AND ABSENCE OF DIFFUSION IN CYCLIC CELLULAR-AUTOMATA

被引:21
作者
BUNIMOVICH, LA [1 ]
TROUBETZKOY, SE [1 ]
机构
[1] UNIV BIELEFELD,FORSCHUNGSZENTRUM BIBOS,D-33615 BIELEFELD,GERMANY
关键词
CELLULAR AUTOMATA; CLOSED ORBIT; PERIODIC POINT; ROTATORS; TIME REVERSIBILITY; LORENTZ LATTICE GAS;
D O I
10.1007/BF02186804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cyclic cellular automata are two-dimensional cellular automata which generalize lattice versions of the Lorentz gas and certain biochemistry models of artificial life. We show that rotators and time reversibility play a special role in the creation of closed orbits in cyclic cellular automata. We also prove that almost every orbit is closed (periodic) and the absence of diffusion for the flipping rotator model (also known as the ant).
引用
收藏
页码:1 / 10
页数:10
相关论文
共 13 条
  • [1] [Anonymous], 1896, VORLESUNGEN GASTHEOR
  • [2] TOPOLOGICAL DYNAMICS OF FLIPPING LORENTZ LATTICE-GAS MODELS
    BUNIMOVICH, LA
    TROUBETZKOY, SE
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) : 297 - 307
  • [3] BUNIMOVICH LA, IN PRESS P C DYNAMIC
  • [4] COHEN EGD, 1992, MICROSCOPIC SIMULATI
  • [5] COHEN EGD, 1993, PATTERN FORMATION LA
  • [6] Cornfeld Isaac P., 1982, ERGODIC THEORY, V245
  • [7] LOW-VISCOSITY LATTICE GASES
    DUBRULLE, B
    FRISCH, U
    HENON, M
    RIVET, JP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1187 - 1226
  • [8] STUDYING ARTIFICIAL LIFE WITH CELLULAR AUTOMATA
    LANGTON, CG
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1986, 22 (1-3) : 120 - 149
  • [9] Lorent HA, 1905, P K AKAD WET-AMSTERD, V7, P438
  • [10] Lorentz HA, 1905, P K AKAD WET-AMSTERD, V7, P585