SYMPLECTIC RUNGE-KUTTA AND RELATED METHODS - RECENT RESULTS

被引:36
|
作者
SANZSERNA, JM
机构
[1] Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, Valladolid
关键词
D O I
10.1016/0167-2789(92)90245-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symplectic algorithms are numerical integrators for Hamiltonian systems that preserve the symplectic structure in phase space. In long time integrations these algorithms tend to perform better than their nonsymplectic counterparts. Some symplectic algorithms are derived by explicitly finding a generating function. Other symplectic algorithms are members of standard families of methods, such as Runge-Kutta methods, that just turn out to preserve the symplectic structure. Here we survey what is known about the second type of symplectic algorithms.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [31] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [32] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [33] Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage
    Tang, Wensheng
    Lang, Guangming
    Luo, Xuqiong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 279 - 287
  • [35] THE NONEXISTENCE OF SYMPLECTIC MULTI-DERIVATIVE RUNGE-KUTTA METHODS
    HAIRER, E
    MURUA, A
    SANZSERNA, JM
    BIT, 1994, 34 (01): : 80 - 87
  • [36] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [37] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &
  • [38] Symplectic partitioned Runge-Kutta methods with the phase-lag property
    Monovasilis, Th
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9075 - 9084
  • [39] Multi-symplectic Runge-Kutta methods for nonlinear dirac equations
    Hong, JL
    Li, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 448 - 472
  • [40] Symplectic Partitioned Runge-Kutta methods with minimal phase-lag
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1251 - 1254