A joint project by the authors has resulted in two new thermodynamic property formulations for oxygen. The fundamental equation explicit in Helmholtz energy by Schmidt and Wagner has been used for the calculation of the property tables presented here, and for comparisons of calculated properties to the experimental data. The formulation by Stewart and Jacobsen is used in this paper in comparisons of properties calculated by the two formulations. These comparisons provide the basis for independent assessment of the accuracy of the available data and calculated properties. The procedures used in determining the formulations by Wagner and Schmidt, and by Stewart and Jacobsen were published earlier. The fundamental equation is valid for thermodynamic properties of oxygen from the freezing line to 300 K at pressures to 80 MPa. A separate vapor pressure equation and equations for the saturated liquid and saturated vapor densities and the ideal gas heat capacity are included. Functions for calculating internal energy, enthalpy, entropy, isochoric heat capacity (C(v)), isobaric heat capacity (C(p)) and velocity of sound are also included. Tables of thermodynamic properties of oxygen are given within the range of validity of the fundamental equation. The fundamental equation reported here may be used to calculate densities with an uncertainty of 0.10 percent, heat capacities within 2.0 percent, and velocity of sound values within 1.0 percent. These uncertainty values are valid for the range outside of the critical region. Comparisons of calculated properties to experimental data are included to verify the accuracy of the formulation.