GLOBAL OPTIMIZATION USING INTERVAL ANALYSIS - ONE-DIMENSIONAL CASE

被引:82
作者
HANSEN, ER
机构
[1] Lockheed Palo Alto Research Laboratory, Palo Alto Alto, California
关键词
global minimization; Global optimization; interval analysis; one-dimensional optimization;
D O I
10.1007/BF00933139
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show how interval analysis can be used to compute the minimum value of a twice continuously differentiable function of one variable over a closed interval. When both the first and second derivatives of the function have a finite number of isolated zeros, our method never fails to find the global minimum. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:331 / 344
页数:14
相关论文
共 10 条
[1]  
Dixon LCW., 1975, GLOBAL OPTIMIZATION
[2]  
Hansen E., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P415, DOI 10.1007/BF01932020
[3]  
Mancini L. J., 1976, Mathematics of Operations Research, V1, P50, DOI 10.1287/moor.1.1.50
[4]  
MCCORMICK G, 1972, NUMERICAL METHODS NO
[5]  
Moore R.E., 1966, INTERVAL ANAL
[6]   COMPUTING RANGE OF A RATIONAL FUNCTION OF N VARIABLES OVER A BOUNDED REGION [J].
MOORE, RE .
COMPUTING, 1976, 16 (1-2) :1-15
[7]  
NICHEL K, 1971, 1136 U WISC MATH RES
[8]  
SCHUBERT RO, 1972, SIAM J NUMER ANAL, V9, P379
[9]   Interval Arithmetic for Guaranteed Bounds in Linear Programming [J].
Stewart, N. F. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 12 (01) :1-5
[10]  
VILKOV A, 1975, USSR COMPUTATIONAL M, V15, P221