ON THE RATE OF QUANTUM ERGODICITY .1. UPPER-BOUNDS

被引:37
作者
ZELDITCH, S
机构
[1] Department of Mathematics, Johns Hopkins University, Baltimore, 21218, MD
关键词
D O I
10.1007/BF02099790
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One problem in quantum ergodicity is to estimate the rate of decay of the sums [GRAPHICS] on a compact Riemannian manifold (My) with ergodic geodesic flow. Here, (LAMBDA(J), OHI(J)} are the spectral data of the DELTA of (M, g), A is a 0-th order psiDO, sigma(A) is the (Liouville) average of its principal symbol and N(lambda) = # {j: square-root lambda(j) less-than-or-equal-to lambda}. That S(k)(lambda; A) = o(1) is proved in [S, Z.1, CV.1]. Our purpose here is to show that S(k)(lambda; A) = O((log lambda)-k/2) on a manifold of (possibly variable) negative curvature. The main new ingredient is the central limit theorem for geodesic flows on such spaces ([R, Si]).
引用
收藏
页码:81 / 92
页数:12
相关论文
共 16 条
[1]   WAVE-EQUATION ON A COMPACT RIEMANNIAN MANIFOLD WITHOUT CONJUGATE POINTS [J].
BERARD, PH .
MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) :249-276
[2]   CANONICAL PERTURBATION-THEORY OF ANOSOV SYSTEMS AND REGULARITY RESULTS FOR THE LIVSIC COHOMOLOGY EQUATION [J].
DELALLAVE, R ;
MARCO, JM ;
MORIYON, R .
ANNALS OF MATHEMATICS, 1986, 123 (03) :537-611
[3]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[4]  
DEVERDIERE YC, 1991, CHAOS PHYSIQUE QUANT
[5]  
GUILLEMIN V, 1978, SEMINAR SINGULARITIE, P219
[6]  
RANDOL B, 1981, B LOND MATH SOC, V13, P309
[7]  
RANDOL B, 1978, T AMS, V263, P209
[8]   CENTRAL LIMIT THEOREM FOR GEODESIC FLOWS ON N-DIMENSIONAL MANIFOLDS OF NEGATIVE CURVATURE [J].
RATNER, M .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 16 (02) :181-197
[9]  
Schnirelman A., 1974, USP MAT NAUK, V29, P181
[10]  
SINAI YG, 1960, SOV MATH DOKL, V1, P983