Phishing Website Classification: A Machine Learning Approach

被引:0
|
作者
Akanbi, Oluwatobi [1 ]
Abunadi, Ahmad [2 ]
Zainal, Anazida [2 ]
机构
[1] Texas Tech Univ, Dept Comp Sci, 2500 Broadway, Lubbock, TX 79409 USA
[2] Univ Teknol Malaysia, Fac Comp, Skudai 81310, Malaysia
来源
关键词
component; Phishing; Website; Machine-Learning; Online Users; Fraud; Classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to circumvent the adverse effect of fraudulent acts committed on the internet by adversaries, different researchers have proposed various solution to this problem. One of this online fraudulent act is website phishing. Website phishing is the act of luring unsuspecting online users into divulging private and confidential information which can be used by the phisher in fraud, blackmail or other ways to negatively affect the users involved. Based on our previous paper, we proposed noble features to better improve the accuracy of machine learning algorithms in classifying phish. In order to ascertain the improvement in website phish classification of machine learning algorithms based on the features extracted in our previous paper, our present approach is based on testing. This approach is divided into three phases. In phase 1, we propose a new method of classifying phish website by using pruning decision tree. In phase 2, we train and test four selected individual reference classifiers and based on their performance, an ensemble of classifier is designed. Lastly, the output of each phase is then compared to show the efficiency of our approach. The experimental result of the research shows that pruning decision tree is comparatively potent in website phish detection.
引用
收藏
页码:354 / 366
页数:13
相关论文
共 50 条
  • [21] A high-accuracy phishing website detection method based on machine learning
    Bahaghighat, Mahdi
    Ghasemi, Majid
    Ozen, Figen
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 77
  • [22] A Machine Learning Approach to Identify Phishing Websites: A Comparative Study of Classification Models and Ensemble Learning Techniques
    Gontla, Bhogesh Karthik
    Gundu, Priyanka
    Uppalapati, Padma Jyothi
    Narasimharao, Kandula
    Hussain, S. Mahaboob
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (05) : 1 - 9
  • [23] Phishing Website Detection from URLs Using Classical Machine Learning ANN Model
    Salloum, Said
    Gaber, Tarek
    Vadera, Sunil
    Shaalan, Khaled
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT II, 2021, 399 : 509 - 523
  • [24] Towards benchmark datasets for machine learning based website phishing detection: An experimental study
    Hannousse, Abdelhakim
    Yahiouche, Salima
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [25] Phishing Website Detection With Semantic Features Based on Machine Learning Classifiers: A Comparative Study
    Almomani, Ammar
    Alauthman, Mohammad
    Shatnawi, Mohd Taib
    Alweshah, Mohammed
    Alrosan, Ayat
    Alomoush, Waleed
    Gupta, Brij B.
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2022, 18 (01)
  • [26] Employing Machine Learning Techniques for Detection and Classification of Phishing Emails
    Moradpoor, Naghmeh
    Clavie, Benjamin
    Buchanan, Bill
    2017 COMPUTING CONFERENCE, 2017, : 149 - 156
  • [27] Comparison of machine learning techniques for classification of phishing web sites
    Kalayci, Tahir Emre
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2018, 24 (05): : 870 - 878
  • [28] A Novel Machine Learning Approach to Detect Phishing Websites
    Tyagi, Ishant
    Shad, Jatin
    Sharma, Shubham
    Gaur, Siddharth
    Kaur, Gagandeep
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 425 - 430
  • [29] Intelligent phishing website detection using classification ensemble
    Zhuang, Wei-Wei
    Ye, Yan-Fang
    Li, Tao
    Jiang, Qing-Shan
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2011, 31 (10): : 2008 - 2020
  • [30] Intelligent Association Classification Technique for Phishing Website Detection
    Al-Fayoumi, Mustafa
    Alwidian, Jaber
    Abusaif, Mohammad
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (04) : 488 - 496