A DISCUSSION OF THE CALCULATION OF FORCES IN THE ONE-DIMENSIONAL FINITE-DIFFERENCE MODEL OF HASHMI AND THOMPSON[1]

被引:4
|
作者
WOODWARD, RL [1 ]
LAMBERT, JP [1 ]
机构
[1] CLAREMONT GRAD SCH,DEPT MATH,CLAREMONT,CA 91711
关键词
D O I
10.1016/0020-7403(81)90055-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
引用
收藏
页码:497 / 501
页数:5
相关论文
共 50 条
  • [41] A finite-difference method for the one-dimensional time-dependent Schrodinger equation on unbounded domain
    Han, HD
    Jin, JC
    Wu, XN
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) : 1345 - 1362
  • [42] Explicit and Locally One-dimensional Finite-Difference Time-Domain Methods Incorporated with Memristor
    Yang, Zaifeng
    Tan, Eng Leong
    Heh, Ding Yu
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2605 - 2605
  • [43] Invariant finite-difference schemes for cylindrical one-dimensional MHD flows with conservation laws preservation
    Kaptsov, E. I.
    Dorodnitsyn, V. A.
    Meleshko, S. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [44] An analysis of the finite-difference method for one-dimensional Klein-Gordon equation on unbounded domain
    Han, Houde
    Zhang, Zhiwen
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (07) : 1568 - 1583
  • [45] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
    魏晓琨
    邵维
    石胜兵
    张勇
    王秉中
    Chinese Physics B, 2015, 24 (07) : 76 - 84
  • [46] A NEW 3RD-ORDER FINITE-DIFFERENCE METHOD FOR TRANSIENT ONE-DIMENSIONAL ADVECTION DIFFUSION
    NOYE, BJ
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1990, 6 (04): : 279 - 288
  • [47] One-dimensional coupled Burgers' equation and its numerical solution by an implicit logarithmic finite-difference method
    Srivastava, Vineet K.
    Tamsir, M.
    Awasthi, Mukesh K.
    Singh, Sarita
    AIP ADVANCES, 2014, 4 (03)
  • [48] OPTIMAL FILTRATION FOR THE APPROXIMATION OF BOUNDARY CONTROLS FOR THE ONE-DIMENSIONAL WAVE EQUATION USING A FINITE-DIFFERENCE METHOD
    Lissy, Pierre
    Roventa, Ionel
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 273 - 291
  • [49] A CONVERGENT FINITE-DIFFERENCE SCHEME FOR THE NAVIER-STOKES EQUATIONS OF ONE-DIMENSIONAL, NONISENTROPIC, COMPRESSIBLE FLOW
    ZHAO, J
    HOFF, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (05) : 1289 - 1311
  • [50] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
    Wei Xiao-Kun
    Shao Wei
    Shi Sheng-Bing
    Zhang Yong
    Wang Bing-Zhong
    CHINESE PHYSICS B, 2015, 24 (07)