3-DIMENSIONAL NUMERICAL INTEGRATIONS OF THE NAVIER-STOKES EQUATIONS FOR FLOW OVER SURFACE-MOUNTED OBSTACLES

被引:34
作者
MASON, PJ
SYKES, RI
机构
[1] Meteorological Office, Bracknell, Berkshire
关键词
D O I
10.1017/S0022112079000240
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical integrations of the Navier-Stokes equations for flow past a smooth, three-dimensional, surface-mounted obstacle are presented. The variation of the flow with Reynolds number, and with geometric ratios such as the maximum slope of the obstacle, are investigated. The separated flow is investigated using visualizations of the surface-stress patterns, and also particle trajectories through the flow. © 1979, Cambridge University Press. All rights reserved.
引用
收藏
页码:433 / 450
页数:18
相关论文
共 14 条
[1]   SMALL-SCALE DYNAMIC-MODEL USING A TERRAIN-FOLLOWING COORDINATE TRANSFORMATION [J].
CLARK, TL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 24 (02) :186-215
[2]  
FARNELL L, UNPUBLISHED
[3]  
Greenspan H. P., 1968, THEORY ROTATING FLUI
[4]   KINEMATICAL STUDIES OF FLOWS AROUND FREE OR SURFACE-MOUNTED OBSTACLES - APPLYING TOPOLOGY TO FLOW VISUALIZATION [J].
HUNT, JCR ;
ABELL, CJ ;
PETERKA, JA ;
WOO, H .
JOURNAL OF FLUID MECHANICS, 1978, 86 (MAY) :179-&
[5]   USE OF NONUNIFORM GRIDS IN FINITE-DIFFERENCE EQUATIONS [J].
KALNAYDE.E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 10 (02) :202-+
[6]  
Lighthill M.J., 1963, LAMINAR BOUNDARY LAY
[7]  
MASKELL EC, 1955, 18063 AER RES COUNC
[8]  
MASON PA, UNPUBLISHED
[9]   SIMPLE CARTESIAN MODEL OF BOUNDARY-LAYER FLOW OVER TOPOGRAPHY [J].
MASON, PJ ;
SYKES, RI .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (02) :198-210
[10]  
Piacsek S. A., 1970, Journal of Computational Physics, V6, P392, DOI 10.1016/0021-9991(70)90038-0