A DECOMPOSITION-DUALIZATION APPROACH FOR SOLVING CONSTRAINED CONVEX MINIMIZATION PROBLEMS WITH APPLICATIONS TO DISCRETIZED OBSTACLE PROBLEMS

被引:2
作者
KRATZSCHMAR, M
机构
关键词
D O I
10.1007/BF01396359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:507 / 531
页数:25
相关论文
共 13 条
[1]   CONVEX SPLINE INTERPOLANTS WITH MINIMAL CURVATURE [J].
BURMEISTER, W ;
HESS, W ;
SCHMIDT, JW .
COMPUTING, 1985, 35 (02) :219-229
[2]   DETERMINATION OF SHAPE PRESERVING SPLINE INTERPOLANTS WITH MINIMAL CURVATURE VIA DUAL PROGRAMS [J].
DIETZE, S ;
SCHMIDT, JW .
JOURNAL OF APPROXIMATION THEORY, 1988, 52 (01) :43-57
[3]  
Glowinski R, 1985, NUMERICAL METHODS NO
[4]   ON THE SOLUTION OF DISCRETIZED OBSTACLE PROBLEMS BY AN ADAPTED PENALTY METHOD [J].
GROSSMANN, C ;
KAPLAN, AA .
COMPUTING, 1985, 35 (3-4) :295-306
[5]  
KRATZSCHMAR M, IN PRESS ADDITIVELY
[6]  
Rockafellar R. T., 1970, CONVEX ANAL
[7]   ON TRIDIAGONAL LINEAR COMPLEMENTARITY-PROBLEMS [J].
SCHMIDT, JW .
NUMERISCHE MATHEMATIK, 1987, 51 (01) :11-21
[8]   NUMERICAL-SOLUTION OF THE OBSTACLE PROBLEM BY THE PENALTY METHOD [J].
SCHOLZ, R .
COMPUTING, 1984, 32 (04) :297-306
[10]  
Schwetlick H, 1979, NUMERISCHE LOSUNG NI