DISPERSION ESTIMATES FOR SPHERICAL SCHRODINGER EQUATIONS: THE EFFECT OF BOUNDARY CONDITIONS
被引:16
作者:
Holzleitner, Markus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Holzleitner, Markus
[1
]
Kostenko, Aleksey
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Kostenko, Aleksey
[1
]
Teschl, Gerald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Int Erwin Schrodinger Inst Math Phys, Boltzmanngasse 9, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Teschl, Gerald
[1
,2
]
机构:
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Int Erwin Schrodinger Inst Math Phys, Boltzmanngasse 9, A-1090 Vienna, Austria
We investigate the dependence of the L-1 -> L-infinity dispersive estimates for one-dimensional radial Schrodinger operators on boundary conditions at 0. In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, l is an element of (0, 1/2). However, for nonpositive angular momenta, l is an element of(-1/2, 0], the standard O(vertical bar t vertical bar(-1/2)) decay remains true for all self-adjoint realizations.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 23 条
[1]
Ananieva A., 2015, J MATH SCI, V211, p[160, 624]