DISPERSION ESTIMATES FOR SPHERICAL SCHRODINGER EQUATIONS: THE EFFECT OF BOUNDARY CONDITIONS

被引:16
作者
Holzleitner, Markus [1 ]
Kostenko, Aleksey [1 ]
Teschl, Gerald [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Int Erwin Schrodinger Inst Math Phys, Boltzmanngasse 9, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Schrodinger equation; dispersive estimates; scattering;
D O I
10.7494/OpMath.2016.36.6.769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the dependence of the L-1 -> L-infinity dispersive estimates for one-dimensional radial Schrodinger operators on boundary conditions at 0. In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, l is an element of (0, 1/2). However, for nonpositive angular momenta, l is an element of(-1/2, 0], the standard O(vertical bar t vertical bar(-1/2)) decay remains true for all self-adjoint realizations.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 23 条