DEVELOPMENT OF A MATHEMATICAL-MODEL FOR A SECONDARY REFORMER

被引:3
|
作者
RAGHUNANDNAN, KS
REDDY, KV
机构
[1] Chemical Engineering Division, Indian Institute of Chemical Technology, Hyderabad
关键词
D O I
10.1002/ceat.270170409
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A rigorous one-dimensional heterogeneous model is developed for a secondary reformer in an ammonia plant with special emphasis on the catalyst particle models. These are based on the effective diffusivity model and the Stefan-Maxwell model in the catalyst pore and the film around the catalyst particle. The performance of these four models is evaluated for the data collected from a commercial reformer in the complete operating range and recommendations are made regarding the use of appropriate particle models. The models for the catalyst particle show considerable deviations at the particle level but the reformer simulations produce almost identical results at the global level for all the four particle models. The need for a rigorous treatment of interphase resistance to mass transfer has been clearly demonstrated by comparison of the present model with the model of Singh and Saraf.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [41] DEVELOPMENT OF PHAGE POPULATIONS IN A BACTERIAL CULTURE - MATHEMATICAL-MODEL
    GROSSI, GF
    CESARENI, G
    LIELLO, F
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES, 1977, 32 (9-10): : 844 - 849
  • [42] A MATHEMATICAL-MODEL FOR INTERDICTION
    RAFFERTY, JA
    KREBS, CV
    MARTENS, H
    OPERATIONS RESEARCH, 1956, 4 (03) : 389 - 389
  • [43] MATHEMATICAL-MODEL OF PHYLLOTAXIS
    ADLER, I
    SIAM REVIEW, 1973, 15 (01) : 244 - &
  • [44] ON A MATHEMATICAL-MODEL IN EPIDEMIOLOGY
    DEMIDOVA, OA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (04): : 14 - 17
  • [45] A MATHEMATICAL-MODEL OF CRYSTALLIZATION
    DOLGONOSOV, BM
    ELENIN, GG
    KRYLOV, VV
    MELIKHOV, IV
    SOSNIN, NV
    DIFFERENTIAL EQUATIONS, 1986, 22 (07) : 830 - 835
  • [46] MATHEMATICAL-MODEL OF THE REGENERATOR
    SCHILL, P
    SILIKATY, 1988, 32 (01): : 29 - 55
  • [47] A MATHEMATICAL-MODEL OF MICROCLIMATE
    ZILITINKEVICH, SS
    BOUNDARY-LAYER METEOROLOGY, 1990, 52 (1-2) : 199 - 202
  • [48] A MATHEMATICAL-MODEL OF THE SELF
    MANN, DW
    PSYCHIATRY-INTERPERSONAL AND BIOLOGICAL PROCESSES, 1992, 55 (04): : 403 - 412
  • [49] A MATHEMATICAL-MODEL OF A CLOUD
    WANG, AP
    ASTROPHYSICS AND SPACE SCIENCE, 1980, 70 (02) : 447 - 459
  • [50] MATHEMATICAL-MODEL OF THE OTOLITH
    KONDRACHUK, AV
    SHCHECHKIN, IE
    SIRENKO, SP
    KOSMICHESKAYA BIOLOGIYA I AVIAKOSMICHESKAYA MEDITSINA, 1986, 20 (06): : 66 - 70