HUMAN TRIACYLGLYCEROL-RICH LIPOPROTEIN SUBFRACTIONS AS SUBSTRATES FOR LIPOPROTEIN-LIPASE

被引:58
|
作者
FISHER, RM
COPPACK, SW
HUMPHREYS, SM
GIBBONS, GF
FRAYN, KN
机构
[1] RADCLIFFE INFIRM,SHEIKH RASHID LAB,OXFORD LIPID METAB GRP,OXFORD OX2 6HE,ENGLAND
[2] RADCLIFFE INFIRM,METAB RES LAB,OXFORD OX2 6HE,ENGLAND
关键词
LIPOPROTEIN LIPASE; TRIACYLGLYCEROL; CHYLOMICRONS; VERY LOW DENSITY LIPOPROTEINS;
D O I
10.1016/0009-8981(95)06032-3
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
In order to test the hypothesis that lipoprotein lipase (LPL) acts preferentially on larger lipoprotein particles, we determined the susceptibility of triacylglycerol-rich lipoprotein (TRL) subfractions to hydrolysis by LPL in vitro. Chylomicrons (S-f > 400), very low density lipoproteins (VLDL)(1) (S-f 60-400) and VLDL(2) (S-f 20-60) were isolated from six subjects with a range of plasma-triacylglycerol (TAG) concentrations following an overnight fast and for up to 6 h after the consumption of a mixed meal (41% fat). The percent of TRL-TAG hydrolysed by LPL in subfractions isolated following overnight fast was VLDL(1) > VLDL(2) (46.8 +/- 10.2 vs. 25.9 +/- 7.4%, P = 0.006) and 3 h after the meal it was chylomicrons > VLDL(1) > VLDL(2) (81.0 +/- 12.6 vs. 52.8 +/- 10.2 vs, 27.7 +/- 6.2%, chylomicrons vs. VLDL(1) and VLDL(1) vs, VLDL(2), both P less than or equal to 0.005). The percent of VLDL(1)-TAG hydrolysed increased both within and between subjects as VLDL(1)-TAG concentrations increased. This relationship could be explained by the positive correlation observed between VLDL(1)-TAG and VLDL(1)-TAG:apolipoprotein B. In conclusion, increasing the size and TAG content of a lipoprotein particle increases its susceptibility to hydrolysis by LPL.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 50 条
  • [21] Influence of lipoprotein-lipase activity on plasma triacylglycerol concentration and lipid storage in three genotypes of ducks
    Andre, J. M.
    Guy, G.
    Gontier-Latonnelle, K.
    Bemadet, M. D.
    Davail, B.
    Hoo-Paris, R.
    Davail, S.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2007, 148 (04): : 899 - 902
  • [22] FAMILIAL COMBINED HYPERLIPIDEMIA AND ABNORMAL LIPOPROTEIN-LIPASE
    BABIRAK, SP
    BROWN, BG
    BRUNZELL, JD
    ARTERIOSCLEROSIS AND THROMBOSIS, 1992, 12 (10): : 1176 - 1183
  • [23] STRUCTURE AND FUNCTIONAL-PROPERTIES OF LIPOPROTEIN-LIPASE
    WANG, CS
    HARTSUCK, J
    MCCONATHY, WJ
    BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1123 (01) : 1 - 17
  • [24] LIPOPROTEIN-LIPASE MASS AND ACTIVITY IN SEVERE HYPERTRIGLYCERIDEMIA
    KOBAYASHI, J
    HASHIMOTO, H
    FUKAMACHI, I
    TASHIRO, J
    SHIRAI, K
    SAITO, Y
    YOSHIDA, S
    CLINICA CHIMICA ACTA, 1993, 216 (1-2) : 113 - 123
  • [25] ALTERATIONS IN LIPOPROTEIN-LIPASE IN INSULIN-RESISTANCE
    ECKEL, RH
    YOST, TJ
    JENSEN, DR
    INTERNATIONAL JOURNAL OF OBESITY, 1995, 19 : S16 - S21
  • [26] NEONATAL EXTINCTION OF LIVER LIPOPROTEIN-LIPASE EXPRESSION
    PEINADOONSURBE, J
    STAELS, B
    DEEB, S
    RAMIREZ, I
    LLOBERA, M
    AUWERX, J
    BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1131 (03) : 281 - 286
  • [27] POLYMORPHISMS OF THE LIPOPROTEIN-LIPASE GENE AND PREMATURE ATHEROSCLEROSIS
    GALTON, DJ
    MATTU, RK
    CAVANNA, J
    JOURNAL OF INTERNAL MEDICINE, 1994, 236 : 63 - 68
  • [28] LIPOPROTEIN-LIPASE ACTIVITY IN PATIENTS WITH COMBINED HYPERLIPEMIA
    SEED, M
    MAILLY, F
    VALLANCE, D
    DOHERTY, E
    WINDER, A
    TALMUD, P
    HUMPHRIES, SE
    CLINICAL INVESTIGATOR, 1994, 72 (02): : 100 - 106
  • [29] INTRACELLULAR REGULATION OF LIPOPROTEIN-LIPASE IN HUMAN MONOCYTE-DERIVED MACROPHAGES
    STRAY, N
    LETNES, H
    BLOMHOFF, JP
    BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1045 (03) : 280 - 284
  • [30] DIFFERENT HYDROLYTIC EFFICIENCIES OF ADIPOSE-TISSUE LIPOPROTEIN-LIPASE ON VERY-LOW-DENSITY LIPOPROTEIN SUBFRACTIONS SEPARATED BY HEPARIN-SEPHAROSE CHROMATOGRAPHY
    GOMEZCORONADO, D
    SAEZ, GT
    LASUNCION, MA
    HERRERA, E
    BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1167 (01) : 70 - 78