Estimation of global time integration errors in rigid body dynamics

被引:0
|
作者
Neumann, Jens [1 ]
Schweizerhof, Karl [1 ]
机构
[1] Univ Karlsruhe, Inst Mech, Kaiserstr 12, D-72128 Karlsruhe, Germany
来源
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS | 2006年 / 15卷 / 06期
关键词
time integration; error estimation; adaptive methods; rigid bodies; dynamics;
D O I
10.3166/remn.15.671-698
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The popular Newmark time integration scheme is used in the standard finite difference form as well as in an equivalent Galerkin form for the time integration of rigid body dynamics problems. Estimators for local and global time integration errors are developed. In particular the evaluation of the dual problem for different goals of the error is discussed. A special focus is also on the comparison for linear and nonlinear problems. Finally an adaptive time integration scheme is presented for which both - the local and the global - error estimators are used. The merits and limits are shown for some particular numerical problems.
引用
收藏
页码:671 / 698
页数:28
相关论文
共 50 条
  • [31] Conservative rigid body dynamics by convected base vectors with implicit constraints
    Krenk, Steen
    Nielsen, Martin B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 269 : 437 - 453
  • [32] A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics
    Romero, I
    Lacoma, LM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (04) : 635 - 660
  • [33] Quaternion-based rigid body rotation integration algorithms for use in particle methods
    Johnson, Scott M.
    Williams, John R.
    Cook, Benjamin K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (08) : 1303 - 1313
  • [34] On the choice of configuration space for numerical Lie group integration of constrained rigid body systems
    Muller, A.
    Terze, Z.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 262 : 3 - 13
  • [35] Stabilization of rigid body attitude motion with time-delayed feedback
    Samiei, Ehsan
    Sanyal, Amit K.
    Butcher, Eric A.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 68 : 509 - 517
  • [36] An Alternative Derivation of the Quaternion Equations of Motion for Rigid-Body Rotational Dynamics
    Udwadia, Firdaus E.
    Schutte, Aaron D.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2010, 77 (04): : 1 - 4
  • [37] A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
    Negrut, Dan
    Jay, Laurent O.
    Khude, Naresh
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (02): : 1 - 11
  • [38] An Angular Momentum and Energy Conserving Lie-Group Integration Scheme for Rigid Body Rotational Dynamics Originating From Stormer-Verlet Algorithm
    Terze, Zdravko
    Mueller, Andreas
    Zlatar, Dario
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (05):
  • [39] An efficient hybrid implicit time integration method with high accuracy for linear and nonlinear dynamics
    Wen, Weibin
    Lei, Ming
    Wang, Pan
    Liu, Tianhao
    Duan, Shengyu
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [40] Data-Based Estimation of Critical Time Steps for Explicit Time Integration
    Willmann, Tobias
    Schilling, Maximilian
    Bischoff, Manfred
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (04)