DIFFERENTIAL FUNCTION AND EXPRESSION OF SACCHAROMYCES-CEREVISIAE B-TYPE CYCLINS IN MITOSIS AND MEIOSIS

被引:136
作者
GRANDIN, N [1 ]
REED, SI [1 ]
机构
[1] SCRIPPS RES INST, DEPT MOLEC BIOL, MB-7, LA JOLLA, CA 92037 USA
关键词
D O I
10.1128/MCB.13.4.2113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.
引用
收藏
页码:2113 / 2125
页数:13
相关论文
共 86 条
[1]  
BASCO R, UNPUB
[2]   INVOLVEMENT OF CDC13+ IN MITOTIC CONTROL IN SCHIZOSACCHAROMYCES-POMBE - POSSIBLE INTERACTION OF THE GENE-PRODUCT WITH MICROTUBULES [J].
BOOHER, R ;
BEACH, D .
EMBO JOURNAL, 1988, 7 (08) :2321-2327
[3]   THE FISSION YEAST CDC2 CDC13 SUC1 PROTEIN-KINASE - REGULATION OF CATALYTIC ACTIVITY AND NUCLEAR-LOCALIZATION [J].
BOOHER, RN ;
ALFA, CE ;
HYAMS, JS ;
BEACH, DH .
CELL, 1989, 58 (03) :485-497
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   A FISSION YEAST B-TYPE CYCLIN FUNCTIONING EARLY IN THE CELL-CYCLE [J].
BUENO, A ;
RICHARDSON, H ;
REED, SI ;
RUSSELL, P .
CELL, 1991, 66 (01) :149-159
[6]   FAILURE TO INDUCE A DNA-REPAIR GENE, RAD54, IN SACCHAROMYCES-CEREVISIAE DOES NOT AFFECT DNA-REPAIR OR RECOMBINATION PHENOTYPES [J].
COLE, GM ;
MORTIMER, RK .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (08) :3314-3322
[7]   Control of M-phase by maturation-promoting factor [J].
Doree, M. .
CURRENT OPINION IN CELL BIOLOGY, 1990, 2 (02) :269-273
[8]   CELL-CYCLE CONTROL IN EUKARYOTES - MOLECULAR MECHANISMS OF CDC2 ACTIVATION [J].
DRAETTA, G .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (10) :378-383
[9]   ACTIVATION OF CDC2 PROTEIN-KINASE DURING MITOSIS IN HUMAN-CELLS - CELL-CYCLE DEPENDENT PHOSPHORYLATION AND SUBUNIT REARRANGEMENT [J].
DRAETTA, G ;
BEACH, D .
CELL, 1988, 54 (01) :17-26
[10]   CDC2 PROTEIN-KINASE IS COMPLEXED WITH BOTH CYCLIN-A AND CYCLIN-B - EVIDENCE FOR PROTEOLYTIC INACTIVATION OF MPF [J].
DRAETTA, G ;
LUCA, F ;
WESTENDORF, J ;
BRIZUELA, L ;
RUDERMAN, J ;
BEACH, D .
CELL, 1989, 56 (05) :829-838