Artificial intelligence: a solution for the lack of pathologists?

被引:0
作者
Jurmeister, Philipp [1 ,2 ]
Mueller, Klaus-Robert [5 ,6 ]
Klauschen, Frederick [1 ,2 ,3 ,4 ,6 ]
机构
[1] Ludwig Maximilians Univ Munchen, Pathol Inst, Thalkirchner Str 36, D-80337 Munich, Germany
[2] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[3] Deutsch Konsortium Translat Krebsforsch DKTK, Partnerstandort Munchen, Munich, Germany
[4] Deutsch Krebsforschungszentrum DKFZ, Munich, Germany
[5] Tech Univ Berlin, Berlin, Germany
[6] Berlin Inst Fdn Learning & Data BIFOLD, Berlin, Germany
来源
PATHOLOGIE | 2022年 / 43卷 / 03期
关键词
Artificial intelligence; Digital pathology; Immunohistochemistry; Molecular pathology; Machine Learning;
D O I
暂无
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Given the rapid developments, there is no doubt that artificial intelligence (AI) will substantially impact pathological diagnostics. However, it remains an open question if AI will primarily be another diagnostic tool, such as immunohistochemistry, or if AI will also be able to replace human expertise. Most current studies on AI in histopathology deal with relatively simple diagnostic problems and are not yet capable of coping with the complexity of routine diagnostics. While some methods in molecular pathology would already be unthinkable without AI, it remains to be shown how AI will also be able to help with difficult histomorphological differential diagnoses in the future.
引用
收藏
页码:218 / 221
页数:4
相关论文
共 13 条
[1]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[2]   Morphological and molecular breast cancer profiling through explainable machine learning [J].
Binder, Alexander ;
Bockmayr, Michael ;
Hagele, Miriam ;
Wienert, Stephan ;
Heim, Daniel ;
Hellweg, Katharina ;
Ishii, Masaru ;
Stenzinger, Albrecht ;
Hocke, Andreas ;
Denkert, Carsten ;
Mueller, Klaus-Robert ;
Klauschen, Frederick .
NATURE MACHINE INTELLIGENCE, 2021, 3 (04) :355-366
[3]   DNA methylation-based classification of central nervous system tumours [J].
Capper, David ;
Jones, David T. W. ;
Sill, Martin ;
Hovestadt, Volker ;
Schrimpf, Daniel ;
Sturm, Dominik ;
Koelsche, Christian ;
Sahm, Felix ;
Chavez, Lukas ;
Reuss, David E. ;
Kratz, Annekathrin ;
Wefers, Annika K. ;
Huang, Kristin ;
Pajtler, Kristian W. ;
Schweizer, Leonille ;
Stichel, Damian ;
Olar, Adriana ;
Engel, Nils W. ;
Lindenberg, Kerstin ;
Harter, Patrick N. ;
Braczynski, Anne K. ;
Plate, Karl H. ;
Dohmen, Hildegard ;
Garvalov, Boyan K. ;
Coras, Roland ;
Hoelsken, Annett ;
Hewer, Ekkehard ;
Bewerunge-Hudler, Melanie ;
Schick, Matthias ;
Fischer, Roger ;
Beschorner, Rudi ;
Schittenhelm, Jens ;
Staszewski, Ori ;
Wani, Khalida ;
Varlet, Pascale ;
Pages, Melanie ;
Temming, Petra ;
Lohmann, Dietmar ;
Selt, Florian ;
Witt, Hendrik ;
Milde, Till ;
Witt, Olaf ;
Aronica, Eleonora ;
Giangaspero, Felice ;
Rushing, Elisabeth ;
Scheurlen, Wolfram ;
Geisenberger, Christoph ;
Rodriguez, Fausto J. ;
Becker, Albert ;
Preusser, Matthias .
NATURE, 2018, 555 (7697) :469-+
[4]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[5]   Similar image search for histopathology: SMILY [J].
Hegde, Narayan ;
Hipp, Jason D. ;
Liu, Yun ;
Emmert-Buck, Michael ;
Reif, Emily ;
Smilkov, Daniel ;
Terry, Michael ;
Cai, Carrie J. ;
Amin, Mahul B. ;
Mermel, Craig H. ;
Nelson, Phil Q. ;
Peng, Lily H. ;
Corrado, Greg S. ;
Stumpe, Martin C. .
NPJ DIGITAL MEDICINE, 2019, 2
[6]   Histomorphological and molecular profiling: friends not foes! Morpho-molecular analysis reveals agreement between histological and molecular profiling [J].
Hoberger, Michael ;
von Laffert, Maximilian ;
Heim, Daniel ;
Klauschen, Frederick .
HISTOPATHOLOGY, 2019, 75 (05) :694-703
[7]   Causability and explainability of artificial intelligence in medicine [J].
Holzinger, Andreas ;
Langs, Georg ;
Denk, Helmut ;
Zatloukal, Kurt ;
Mueller, Heimo .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)
[8]   Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases [J].
Jurmeister, Philipp ;
Bockmayr, Michael ;
Seegerer, Philipp ;
Bockmayr, Teresa ;
Treue, Denise ;
Montavon, Gregoire ;
Vollbrecht, Claudia ;
Arnold, Alexander ;
Teichmann, Daniel ;
Bressem, Keno ;
Schueller, Ulrich ;
von Laffert, Maximilian ;
Mueller, Klaus-Robert ;
Capper, David ;
Klauschen, Frederick .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (509)
[9]   Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence [J].
Kalra, Shivam ;
Tizhoosh, H. R. ;
Shah, Sultaan ;
Choi, Charles ;
Damaskinos, Savvas ;
Safarpoor, Amir ;
Shafiei, Sobhan ;
Babaie, Morteza ;
Diamandis, Phedias ;
Campbell, Clinton J. V. ;
Pantanowitz, Liron .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]   Standardized Ki67 Diagnostics Using Automated Scoring-Clinical Validation in the GeparTrio Breast Cancer Study [J].
Klauschen, Frederick ;
Wienert, Stephan ;
Schmitt, Wolfgang D. ;
Loibl, Sibylle ;
Gerber, Bernd ;
Blohmer, Jens-Uwe ;
Huober, Jens ;
Ruediger, Thomas ;
Erbstoesser, Erhard ;
Mehta, Keyur ;
Lederer, Bianca ;
Dietel, Manfred ;
Denkert, Carsten ;
von Minckwitz, Gunter .
CLINICAL CANCER RESEARCH, 2015, 21 (16) :3651-3657