Integrative analysis of the metabolome and transcriptome provides novel insights into the mechanisms of flavonoid biosynthesis in Camellia lanceoleosa

被引:0
|
作者
Song, Qiling [1 ]
Gong, Wenfang [1 ]
Yu, Xinran [1 ]
Ji, Ke [1 ]
Chang, Yihong [1 ]
Wang, Linkai [1 ]
Yuan, Deyi [1 ]
机构
[1] Cent South Univ Forestry & Technol, Key Lab Cultivat & Protect Nonwood Forest Trees, Minist Educ, Changsha 410004, Hunan, Peoples R China
关键词
Camellia lanceoleosa; Metabolome; Transcriptome; Weighted gene coexpression network analysis; Flavonoid biosynthesis; Differentially expressed genes;
D O I
暂无
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Flavonoids, the effective material basis for the anti-thrombotic, anti-myocardial ischemia, and anti-dementia drug system framework, are one class of the main bioactive compounds in tea-oil Camellia. However, the molecular mechanism of the transcription regulation of flavonoid biosynthesis in tea-oil Camellia has not been fully investigated. Camellia lanceoleosa (C. lanceoleosa) is a diploid species of section Oleifera with genomic information, which has high value in scientific research and application. To comprehend the molecular mechanism of flavonoid biosynthesis in C. lanceoleosa, five different tissues (roots, stems, leaves, flower buds, and seeds) were used to perform an integrated analysis of the metabolome and transcriptome. Overall, 1,437 metabolites were identified and quantified, among which 488 common metabolites and 92 tissue-specific metabolites were detected in different tissues of C. lanceoleosa. Notably, the most abundant metabolite class was the flavonoids in the detected tissues of C. lanceoleosa. Furthermore, the differential metabolites and genes were also mainly enriched in flavonoid biosynthesis. A total of 145 differentially accumulated flavonoids and 65 differentially expressed structural genes were found within the biosynthesis of flavonoid in C. lanceoleosa. The expression patterns of most genes were consistent with the flavonoid accumulation patterns in the corresponding pathways. Using weighted gene coexpression network analysis, five gene modules and several candidate hub genes involved in flavonoid biosynthesis were investigated in different tissues of C. lanceoleosa, these genes included differentially expressed structural genes (PAL, CHS, DFR, and ANR) and transcription factors (bHLHs, MYBs, WRKYs, NACs, and SPL6). These results provide useful genetic resources for studying the molecular insights into the regulatory network of flavonoid biosynthesis in C. lanceoleos.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Integrated transcriptome and targeted metabolome analyses provide insights into flavonoid biosynthesis in kiwifruit (Actinidia chinensis)
    Mao, Jipeng
    Gao, Zhu
    Wang, Xiaoling
    Yao, Dongliang
    Lin, Mengfei
    Chen, Lu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits
    Pan, Zhiyong
    Zeng, Yunliu
    An, Jianyong
    Ye, Junli
    Xu, Qiang
    Deng, Xiuxin
    JOURNAL OF PROTEOMICS, 2012, 75 (09) : 2670 - 2684
  • [43] Integrative analysis of transcriptome and metabolome provides insights into the underlying mechanism of cold stress response and recovery in two tobacco cultivars
    Hu, Zhengrong
    Yan, Weijie
    Yang, Chenkai
    Huang, Xuebing
    Hu, Xutong
    Li, Yangyang
    Yang, Jiashuo
    Xang, Shipeng
    Yi, Pengfei
    Hu, Risheng
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 200
  • [44] Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum
    Zhao, Xing
    Li, Yiguo
    Huang, Yuanchong
    Shen, Jun
    Xu, Huini
    Li, Kunzhi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [45] Transcriptome and metabolome analysis revealed that phenylpropanoid and flavonoid biosynthesis respond to drought in tiger nut
    Qi, Zhang
    Cheng, Yan
    Gao, Yuling
    Liu, Runqing
    Li, Haoxin
    Yu, Jinqi
    Guo, Jiaxuan
    Li, Meiqing
    Li, Caihua
    Li, Yuhuan
    Wang, Hongda
    Xu, Qingqing
    Liu, Jiaxi
    Sun, Xuewei
    Mu, Zhongsheng
    Du, Jidao
    PHYSIOLOGIA PLANTARUM, 2025, 177 (02)
  • [46] Unraveling the Regulatory Mechanism of Color Diversity in Camellia japonica Petals by Integrative Transcriptome and Metabolome Analysis
    Fu, Mingyue
    Yang, Xu
    Zheng, Jiarui
    Wang, Ling
    Yang, Xiaoyan
    Tu, Yi
    Ye, Jiabao
    Zhang, Weiwei
    Liao, Yongling
    Cheng, Shuiyuan
    Xu, Feng
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [47] Comprehensive analysis of transcriptome and metabolome provides insights into the stress response mechanisms of apple fruit to postharvest impact damage
    Yang, Zhichao
    Lin, Menghua
    Yang, Xiangzheng
    Wu, Di
    Chen, Kunsong
    FOOD CHEMISTRY: MOLECULAR SCIENCES, 2023, 7
  • [48] Integrative analysis of transcriptome and metabolome provide new insights into mechanisms of Capilliposide A against cisplatin-induced nephrotoxicity
    Fang, Jiaxi
    Wang, Luping
    Zhang, Di
    Liang, Yan
    Li, Shouxin
    Tian, Jingkui
    He, Qiang
    Jin, Juan
    Zhu, Wei
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2024, 238
  • [49] Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli
    Apekshika T. Premathilake
    Junbei Ni
    Jiaqi Shen
    Songling Bai
    Yuanwen Teng
    BMC Plant Biology, 20
  • [50] Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli
    Premathilake, Apekshika T.
    Ni, Junbei
    Shen, Jiaqi
    Bai, Songling
    Teng, Yuanwen
    BMC PLANT BIOLOGY, 2020, 20 (01)