Blow-up directions at space infinity for solutions of semilinear heat equations

被引:36
作者
Giga, Yoshikazu [1 ]
Umeda, Noriaki [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1,Komaba, Tokyo 1538914, Japan
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2005年 / 23卷 / 1-2期
基金
日本学术振兴会;
关键词
nonlinear heat equation; blow-up at space infinity; blow-up direction;
D O I
10.5269/bspm.v23i1-2.7450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A blowing up solution of the semilinear heat equation ut = Delta u+ f (u) with f satisfying lim inf f (u)/u(p) > 0 for some p > 1 is considered when initial data u(0) satisfies u(0) <= M, u(0) not equivalent to M and lim(m) (>infinity) inf(x)is an element of B-m u(0)(x) = M with sequence of ball {B-m} whose radius diverging to infinity. It is shown that the solution blows up only at space infinity. A notion of blow-up direction is introduced. A characterization for blow-up direction is also established.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 13 条
[1]   Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity [J].
Filippas, S ;
Herrero, MA ;
Velázquez, JJL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2004) :2957-2982
[2]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[3]   On blow-up rate for sign-changing solutions in a convex domain [J].
Giga, Y ;
Matsui, S ;
Sasayama, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (15) :1771-1782
[4]   Blow up rate for semilinear heat equations with subcritical nonlinearity [J].
Giga, Y ;
Matsui, SY ;
Sasayama, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :483-514
[5]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[6]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[7]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[8]  
Giga Y., J MATH ANAL APPL
[9]  
HERRERO MA, 1994, CR ACAD SCI I-MATH, V319, P141