A MAXIMUM PRINCIPLE FOR 2ND-ORDER NONLINEAR DIFFERENTIAL-INEQUALITIES AND ITS APPLICATIONS

被引:6
作者
WONG, FH
YEH, CC
YU, SL
机构
[1] NATL CENT UNIV,DEPT MATH,CHUNGLI 32054,TAIWAN
[2] ST JOHNS & ST MARYS INST TECHNOL,TAIPEI,TAIWAN
关键词
ZERO; 2ND-ORDER; NONLINEAR DIFFERENTIAL INEQUALITY; MAXIMUM PRINCIPLE; LEVIN COMPARISON THEOREM;
D O I
10.1016/0893-9659(95)00055-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let y(t) be a nontrivial solution of the second order differential inequality y(t){(r(t)y'(t))' + f(t,y(t))} less than or equal to 0. We show that the zeros of y(t) are simple; y(t) and y'(t) have at most finite number of zeros on any compact interval [a,b] under suitable conditions on r and f. Using the main result, we establish some nonlinear maximum principles and a nonlinear Levin's comparison theorem, which extend some results of Protter, Weinberger, and Levin.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 9 条
[1]  
Agarwal RP, 1993, UNIQUENESS NONUNIQUE
[2]  
Protter MH., 1984, MAXIMUM PRINCIPLES D, DOI 10.1007/978-1-4612-5282-5
[3]   GENERALIZED MAXIMUM PRINCIPLE FOR HIGHER-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
SHENG, Q ;
AGARWAL, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 174 (02) :476-479
[4]  
SWANSON CA, 1968, COMP OSCILLATION THE
[6]  
Wong FH, 1991, HIROSHIMA MATH J, V21, P521
[7]  
Yeh C.C., 1991, MATH JPN, V36, P703
[8]  
[No title captured]
[9]  
[No title captured]