ON THE STANDARD MAP CRITICAL FUNCTION

被引:38
作者
MARMI, S [1 ]
STARK, J [1 ]
机构
[1] HIRST RES CTR,LONG RANGE RES LAB,WEMBLEY HA9 7PP,ENGLAND
关键词
D O I
10.1088/0951-7715/5/3/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A critical function for an area-preserving map associates with each fixed irrational rotation number omega the breakdown threshold K(omega) of the corresponding KAM invariant circle. Understanding the structure of such a function and obtaining good estimates and approximations to it is a problem of fundamental theoretical importance and also has relevance to many applications. We present strong numerical evidence that a purely arithmetic function, the Brjuno function B(omega), which only depends on the nearest-integer continued fraction expansion of the rotation number, omega, provides a good approximation to log(K(omega)) for the standard map, which is one of the most commonly studied area-preserving maps. We discuss the relationship of the Brjuno function to critical functions in other small-divisor problems, remark on the relevance of our results in explaining the modular smoothing technique of Buric and Percival and prove that K(omega) > 0 for all complex-omega with a non-zero imaginary part.
引用
收藏
页码:743 / 761
页数:19
相关论文
共 44 条
[1]  
Arnold VI., 1965, AM MATH SOC TRANSL, V46, P213, DOI [10.1090/trans2/046/11, DOI 10.1090/TRANS2/046/11]
[2]  
BOREL E, 1917, LECCONS FONCTIONS MO
[3]  
Brjuno A.D., 1971, T MOSC MATH SOC, V25, P131
[4]  
Bruno A. D, 1972, T MOSCOW MATH SOC, V26, P199
[5]   MODULAR SMOOTHING AND FINITE PERTURBATION-THEORY [J].
BURIC, N ;
PERCIVAL, IC .
NONLINEARITY, 1991, 4 (03) :981-1000
[6]   CRITICAL FUNCTION AND MODULAR SMOOTHING [J].
BURIC, N ;
PERCIVAL, IC ;
VIVALDI, F .
NONLINEARITY, 1990, 3 (01) :21-37
[7]   CONSTRUCTION OF ANALYTIC KAM SURFACES AND EFFECTIVE STABILITY BOUNDS [J].
CELLETTI, A ;
CHIERCHIA, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :119-161
[8]  
DECASTRO C, 1991, UNPUB
[9]   ACCURATE STRATEGIES FOR SMALL DIVISOR PROBLEMS [J].
DELALLAVE, R ;
RANA, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 22 (01) :85-90
[10]  
ELIASON LH, 1990, ANAL ET CETERA, P283