SOLUTION OF THE DISCRETE-TIME LYAPUNOV MATRIX EQUATION IN CONTROLLABLE CANONICAL FORM

被引:40
作者
BITMEAD, RR
机构
[1] Department of Electrical Engineering, University of Newcastle, Newcastle, N.S.W.
关键词
D O I
10.1109/TAC.1979.1102064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The solution to the Discrete-Time Lyapunov matrix equation in controllable canonical form is shown to be the inverse of the Schur-Cohn matrix. A simple constructive procedure of Berkhout, based on the backwards Levinson algorithm, is discussed and an application of the result in stochastic control is mentioned. Copyright © 1979 by The Institute of Electrical and Electronics Engineers, Inc.
引用
收藏
页码:481 / 482
页数:2
相关论文
共 14 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]   COMPUTATION OF CAUCHY INDEX [J].
ANDERSON, BD .
QUARTERLY OF APPLIED MATHEMATICS, 1972, 29 (04) :577-&
[4]  
BARNETT S, 1971, MATRICES CONTROL THE
[5]   STABILITY AND LEAST-SQUARES ESTIMATION [J].
BERKHOUT, AJ .
AUTOMATICA, 1975, 11 (06) :637-638
[6]  
Gohberg I., 1974, TRANSL MATH MONOGRAP, V41
[7]  
Grenander U., 1984, CALIFORNIA MONOGRAPH, V2nd
[8]  
Jury EI, 1974, INNERS STABILITY DYN
[9]  
KAILATH T, 1979, COURSE LINEAR SYSTEM
[10]  
Levinson N., 1947, J MATH PHYS, V25, P261