ON THE ASYMPTOTICS OF THE DISTRIBUTION OF EXCESS

被引:2
作者
Lotov, V. I. [1 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
关键词
random walk; excess over boundary; renewal function; asymptotic expansions;
D O I
10.17377/semi.2015.12.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find asymptotic expansion in the powers of e(-b) for the distribution of excess over boundary b -> infinity under one-sided Cramer condition on the distribution of random walk summands. As a corollary, we obtain asymptotic expansion for the renewal function.
引用
收藏
页码:292 / 299
页数:8
相关论文
共 7 条
[1]  
Borovkov A. A., 1976, STOCHASTIC PROCESSES
[2]  
Borovkov A. A., 2013, PROBABILITY THEORY
[3]   A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM-WALK WITH A 2-SIDED BOUNDARY [J].
KEMPERMAN, JHB .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04) :1168-&
[4]  
Lotov V. I., 1989, STAT CONTROL RANDOM, P117
[5]  
Lotov VI, 1996, ANN PROBAB, V24, P2154
[6]  
LOTOV VI, 1988, THEOR PROBAB APPL+, V32, P57
[7]   ASYMPTOTIC OF DISTRIBUTION OF THE SUPREMUM OF SEQUENTIAL SUMS [J].
LOTOV, VI .
MATHEMATICAL NOTES, 1985, 38 (5-6) :876-882