Controllability of mixed Volterra-Fredholm type integrodifferential third order dispersion equations

被引:6
|
作者
Kumar, Mohit [1 ]
Sukavanam, Nagarajan [1 ]
机构
[1] Indian Inst Technol, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Controllability; dispersion equation; Korteweg-de Vries equation; Banach fixed point theorem;
D O I
10.1515/jaa-2015-0001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a result concerning the controllability of a mixed Volterra-Fredholm type integrodifferential third order dispersion equation. The result is obtained by using the theory of strongly continuous semigroups and the Banach fixed point theorem.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Approximate controllability of mixed stochastic Volterra-Fredholm type integrodifferential systems in Hilbert space
    Muthukumar, P.
    Balasubramaniam, P.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2911 - 2922
  • [2] CONTROLLABILITY OF NON-DENSELY DEFINED ABSTRACT MIXED VOLTERRA-FREDHOLM NEUTRAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS
    Kucche, Kishor D.
    Dhakne, M. B.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (02)
  • [3] A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r ∈ (1, 2) with impulses
    Raja, Marimuthu Mohan
    Vijayakumar, Velusamy
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    Albalawi, Wedad
    Abdel-Aty, Abdel-Haleem
    AIMS MATHEMATICS, 2023, 8 (05): : 10802 - 10821
  • [4] A note on the existence and optimal control for mixed Volterra-Fredholm-type integrodifferential dispersion system of third order
    Patel, Rohit
    Vijayakumar, V.
    Nieto, Juan J.
    Jadon, Shimpi Singh
    Shukla, Anurag
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2113 - 2121
  • [5] ON MIXED VOLTERRA-FREDHOLM TYPE INTEGRAL-EQUATIONS
    PACHPATTE, BG
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (04): : 488 - 496
  • [6] EXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR MIXED VOLTERRA-FREDHOLM INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
    Tidke, Haribhau L.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [7] New discussion on the approximate controllability of Sobolev-type Hilfer fractional stochastic mixed Volterra-Fredholm integrodifferential inclusions of order 1 < μ < 2
    Pradeesh, J.
    Panda, Sumati Kumari
    Vijayakumar, V.
    Jothimani, K.
    Valliammal, N.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2025, 43 (02) : 131 - 161
  • [8] Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations
    Kucche, Kishor D.
    Shikhare, Pallavi U.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (02): : 145 - 159
  • [9] Nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition
    Haribhau L. Tidke
    Machindra B. Dhakne
    Applications of Mathematics, 2012, 57 : 297 - 307
  • [10] Nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition
    Tidke, Haribhau L.
    Dhakne, Machindra B.
    APPLICATIONS OF MATHEMATICS, 2012, 57 (03) : 297 - 307